Учебная работа № 1902. Марс

Учебная работа № 1902. Марс

1. Общие сведения о планете.

Аэлита – символ Марса – планеты больших ожиданий и несбывшихся надежд. Во всей Солнечной системе нет, пожалуй, другого небесного тела, которое сыграло бы столь великую роль в развитии планетной астрономии. И хотя обычно названия планет имеют малое отношение к професси боговтезок, Марс в свое время вызвал настоящую войну.

Диаметр Марса равен 6787 км – почти вдвое меньше земного – весьма миниатюрный мир. По объему планета примерно в 7 раз меньше Земли, а по массе – в 9 раз.

Орбита Марса, впервые вычисленная Иоганном Кеплером, представляет собой эллипс с заметным эксцентриситентом (e=0,093).

Марс обходит свою орбиту за 687 земных суток, значит, марсианский год почти вдвое длиннее земного, и потому встречаются обе планеты в противостояниях лишь через 2 года и 2 месяца (780 суток). Но, если посмотреть на рисунок, на котором представлены орбиты обеих планет, легко понять, что не все противостояния одинаково удобны для наблюдений. Гораздо лучше наблюдать Марс, когда он находится вблизи перигелия. Тогда его расстояние до Земли уменьшается до 56300000 км. Вблизи же афелия это расстояние увеличивается почти вдвое. Годы наибольшего сближения планет называются великими противостояниями Марса. В эти дни все телескопы мира устремлены на красную планету.

Во время великих противостояний диаметр Марса виден почти вдвое большим, чем во время обычных противостояний и светит Марс в эти периоды ярче, чем Сириус. Великие противостояния всегда бывают в августе и повторяются через 1517 лет. С одного из них и началась бурная история “красной планеты”.

Наблюдать Марс в телескоп и составлять карты стали с 1636 года, то есть с самого начала телескопических наблюдений. Даже в слабые и несовершенные телескопы на поверхности Марса легко рассмотреть разноцветные пятна: белые – у полюсов, зеленоватокоричневые – в умеренных поясах и оранжевокрасные – у экватора. Наблюдая за движением этих пятен, астрономы измерили период вращения Марса вокруг своей оси. Он оказался “земного порядка” – 24 часа 37 минут 22,4 секунды. Во второй половине XIX века уже считалось, что “общая карта Марса может быть изображена с большей уверенностью, чем карты малодоступных стран, окружающих наши земные полюсы”.

В 1878 году наступило великое противостояние Марса. Миланский астроном Джиованни Скиапарелли, обладавший необычайно зоркими глазами, увидел туманные полоски на поверхности Марса. Их было множество. Тонкие прямые линии, будто проведеные по линейке, пересекали красноватые «материки», соединяя между собой «моря» и «озера» планеты.

Они не могли быть реками. Для этого линии были слишком прямыми и располагались слишком правильно геометрически. Они не могли быть горными хребтами, чудовищными оврагами… Они не могли быть ничем, что создает природа. Ибо природа не в состоянии провести прямую линии на округлом боку планеты. Скиапарелли решает, что перед ним результат работы разума!

Скиапарелли составляет подробную карту Марса, наносит все видимые в 24сантиметровый телескоп каналы и дает им названия. Еще больше крепнет его уверенность, когда он обнаруживает, что особенно четко видны каналы в том полушарии Марса, в котором начинается весна. Он видит, как уменьшаются весной белые пятна на полюсах Марса. И думает: лед полярных областей тает. Темные полосы постепенно проступают на диске планеты от полюса к экватору, значит, вода начинает поступать в пересохшие за зиму русла и по берегам марсианских каналов расцветает марсианская растительность…

В 1879 году Скиапарелли публикует результаты своих наблюдений и свои выводы. Они производят сенсацию. Астрономы снова кинулись к своим инструментам и… разделились на враждующие лагери. Началась «великая марсианская война». Если раньше наблюдения планет производились, в основном, любителями, вооруженными малыми телескопами, то теперь самые крупные обсерватории включили изучение Марса в планы своих работ…

Так началось бурное исследование “красной планеты”.

2. Радиолокационные исследования Марса.

С начала 60х годов XX в. для исследования периодов и направления вращения планет, а вслед за тем рельефа и физических свойств их поверхностей стала успешно применяться радиолокация. За короткий период ее возможности значительно возросли вследствие совершенствования как аппаратуры, так и методов измерений. Для определения периодов вращения используются результаты анализа величин смещения и расширения спектральной линии отраженного излучения (эхосигнала), обусловленных эффектом Доплера, а для изучения профилей и свойств поверхности данные об интенсивности отраженного излучения и о распределении интенсивности по спектру, с учетом времени запаздывания прихода сигналов на приемную антенну и доплеровского сдвига по частоте. Важную информацию о микроструктуре поверхности несут также данные измерений степени поляризации отраженных планетой радиоволн.

Радиолокационные исследования наиболее информативны для низкоширотных областей, поскольку при переходе к высоким широтам, а значит, удалении от самой близкой к Земле (подрадарной) области, дающей наибольший вклад в отражение, погрешности измерений и неоднозначность их интерпретации резко возрастают. В радиолокационной астрономии преимущественно используются радиоволны сантиметрового частотного диапазона.

Радиолокационные исследования поверхности Марса особенно интенсивно начались в конце 60х и в начале 70х годов, до тех пор, пока этот метод практически не был вытеснен мощным потоком информации с искусственных спутников планеты. Наилучшее достигнутое в этот период разрешение составило 8 км по долготе и около 80 км по широте в пределах широтного пояса +/ 20o по обе стороны от экватора. Были обнаружены значительные вариации марсианского рельефа, достигающие высоты 14 км в глобальном масштабе. На отдельных участках длиной в десятки и сотни километров были выявлены многочисленные перепады высот в 12 и более километров, большинство из которых, как подтвердили в дальнейшем результаты фотографирования Марса с космических аппаратов, правильно ассоциировались с кратерами поперечником до 50100 км. Одновременно оценивались рассеивающие свойства поверхности и углы наклона участков, сопоставимых по своей протяженности с длиной волны. Чем больше эти углы, тем больше шероховатость поверхности, или, другими словами, более неоднороден микрорельеф. Оказалось, что участки марсианской поверхности, от которых отражаются радиоволны, в целом довольно сглаженные: среднеквадратические значения углов их наклона лежат в пределах от 0,5 до 4o , что существенно меньше, чем у Луны или Меркурия.

Интенсивность отраженного планетой сигнала зависит от коэффициента отражения K (выражаемого в процентах), с которым непосредственно связаны физические свойства поверхности (прежде всего плотность поверхностного слоя на глубине порядка нескольких длин волн зондирующего излучения) и характер слагающих поверхностных пород. Этими свойствами определяется величина диэлектрической проницаемости  материала, от которого отражается электромагнитная волна. Таким образом, измеряя , можно оценивать плотность грунта  на планете. Радиолокационные исследования Марса обнаружили колебания диэлектрической проницаемости в широких пределах, примерно от 1,5 до 5, чему отвечают значения плотности от 1 до 2,5 г/см3 . Эти оценки были позднее подтверждены путем измерений при помощи бортовых радиометров сантиметрового диапазона, работавших на спутниках Марса «Марс3» и «Марс5». Полученный широкий диапазон значений свидетельствует об изменении свойств марсианской поверхности от твердых скальных пород до сильно раздробленных, сыпучих грунтов, что действительно имеет место в различных районах планеты.

Таблица 1.

Характеристики поверхности Марса по радиолокационным данным.

K, % 3 – 14
1,4 4,8
, г/см3 1 2,5
, град 0,5 – 4

3. Рельеф поверхности Марса.

Во второй половине 60х годов с пролетных аппаратов «Маринер4,6,7» были получены первые фотоснимки нескольких сравнительно небольших районов поверхности в южном полушарии. Снимки, которых с таким нетерпением ждали, принесли разочарование. Отснятые районы изобиловали кратерами, в большинстве своем сильно разрушенными и чемто напоминавшими лунные. Основываясь на этой весьма ограниченной информации, о Марсе стали говорить как о мертвой планете не только в биологическом, но и в геологическом смысле. Это сильно ослабило традиционный интерес к нему исследователей и широкой общественности, длительное время подогревавшийся такими экзотическими феноменами, как «сезонная смена растительного покрова», «каналы» и т.п. Однако дальнейшие исследования, особенно энергично развернутые после вывода на орбиты вокруг Марса первых искусственных спутников в 1971 году (советских «Марс2» и «Марс3» и американского «Маринер9»), не просто «возродили», а значительно усилили былой интерес к этой планете.

Особенно эффективными оказались результаты глобального картирования Марса путем передачи телевизионных изображений и фотографирования его поверхности со спутников «Маринер9», «Марс5» и «Викинг1,2». Изображения получены в основном с разрешением в 1 км, но отдельные участки исследованы при разрешении до 4050 м, т.е. в 10 000 раз более высоком, чем при наблюдении с Земли. Это дало возможность увидеть, что же представляют собой наблюдаемые в телескоп на диске Марса темные и светлые области, понять, с чем связаны периодические изменения их очертаний и контрастов, сколь реальны границы других слабых, едва различимых пятен, как выглядят полярные шапки. Последовательные съемки одних и тех же районов за период, превышающий марсианский год, позволили проследить динамику сезонных колебаний и влияние атмосферных процессов на морфологию марсианской поверхности.

Изучению структуры и рельефа поверхности во многом способствовали также одновременные измерения в других диапазонах длин волн инфракрасном, ультрафиолетовом, сантиметровом.

Что же на самом деле представляет собой поверхность Марса? Прежде всего оказалось, что уже отмечавшееся различие в расположении средних уровней поверхности северного и южного полушарий изза несимметричности фигуры довольно отчетливо проявляется и в морфологии рельефа: в северном полушарии преобладают равнинные области, в южном кратерированные. Выделяются крупные, поперечником свыше 2000 км, котловины («моря»), такие как Эллада, Аргир, Амазония, Хрис, и возвышенные плато («материки») Фарсида, Элизиум, Тавмасия и др. Последние по своим размерам близки к земным континентам и возвышаются на 46 км над уровнем средней поверхности, который соответствует экваториальному радиусу планеты 3394 км. Если бы на Марсе существовали океаны, как на Земле, они бы заполнили обширные пространства котловин, а эти плато действительно выделились бы как материки.

Помимо обширных кратерированных районов, были обнаружены прямые свидетельства тектонической и вулканической деятельности в виде характерных вулканических конусов и разломов, сочетания относительно более молодых структур, довольно четкие следы воздействия различных эрозионных факторов и процессов осадконакопления.

Подавляющее большинство сосредоточенных преимущественно в средне и высокоширотных районах южного полушария кратеров ударного происхождения, с различной степенью стирания или разрушения за счет последующих геологических процессов. По степени облитерации, прежде всего по характеру разрушения кромок, или валов склонов, можно судить о возрасте кратера и об интенсивности процессов, приведших к сглаживанию. В целом кратеры на Марсе более мелкие, чем на Луне и Меркурии, но значительно глубже, чем на Венере. Внешние склоны валов типичных кратеров имеют углы наклона по отношению к горизонту около 10o , внутренние стенки наклонены на 2025o . Как правило, дно кратеров плоское вследствие заполнения эродированным материалом.

Преобладающие формы рельефа северного полушария непосредственно связаны с активными геологическими процессами. В первую очередь внимание привлекают проявления вулканизма громадные щитовые вулканы с четко очерченными кратерами на вершинах кальдерами. Такие кратеры образуются при частичном обрушении вершины вулканического конуса, сопровождающем сильные извержения. Четыре вулкана в области Фарсида в несколько раз больше существующих на Земле.

Крупнейшие вулканические конусы называются горами Арсия, Акреус, Павонис и Олимп. Они достигают 500600 км в основании, поднимаясь над окружающей равниной на 2021 км. По отношению же к среднему уровню поверхности Марса высота Арсии и Акреуса 27 км, а Олимпа и Павониса 26 км. Поражают воображение не только высота этих гор, но и диаметры кратеров на их вершинах: около 100 км у Арсии и 60 км у Олимпа. Гора Олимп это хорошо известное астрономам наиболее светлое пятно, наблюдаемое на диске Марса в средних широтах, обозначавшееся на прежних картах как Никс Олимпика (Снега Олимпа). Само название говорит о том, что его считали возвышением; мало кто мог предполагать, что это возвышение столь грандиозно по своим размерам.

Отсутствие в областях Марса, где сосредоточены вулканы, кратеров ударного происхождения, а также хорошо сохранившиеся следы лавовых потоков на склонах гор позволяют предположить, что вулканы действовали еще сравнительно недавно (по оценкам не более нескольких сотен миллионов лет назад). Свидетельства широко развитого вулканизма на планете дают также хорошо сохранившиеся остатки лавовых потоков на панорамах, переданных с посадочного аппарата «Викинг2». Место посадки на обширной марсианской равнине Утопия буквально усыпано многочисленными камнями, с характерными сколами и ноздреватыми поверхностями типа пемз. Подобные продукты раздробления пемзовых лав в виде обломочных рыхлых глыб часто встречаются на Земле.

Об интенсивной тектонической активности свидетельствуют многочисленные разломы и сбросы марсианской коры, образовавшиеся утесы, грабены, обширные ущелья с системой ветвящихся каньонов. Они достигают несколько километров в глубину, десятков километров в ширину, сотен и даже тысяч километров в длину. Сетки мощных каньонов зачастую отделены друг от друга плоскими плато или горами с плоскими вершинами и крутыми склонами, которые сложены наиболее прочными породами, противостоящими разрушению. Такие горы называют столовыми. Очевидно, эти образования, а также цепочки кратеров при наблюдении с Земли и создавали иллюзию марсианских «кратеров» одной из наиболее известных и притягательных гипотез в истории астрономии конца XIX и первой половины XX столетий.

Вследствие наличия атмосферы и значительной эффективности эрозии на Марсе кратеры метеоритного происхождения сильно модифицированы. По этой же причине образовалось огромное количество пылепесчаного материала, что стало характерной чертой марсианской поверхности. Перемещение пыли ветром, обусловленное как локальными метеорологическими, так и глобальными циркуляционными процессами на планете, вызывает периодические изменения очертаний светлых и темных областей, причем темные области систематически на несколько Кельвинов теплее светлых. В относительно спокойные периоды тонкозернистый материал преимущественно скапливается в углублениях, а при сильных ветрах выдувается из них, образуя характерные светлые шлейфы у кромок кратеров, ориентированные в направлении ветра. Это преимущественная ориентировка может сохраняться в течение определенного времени и внутри кратеров, где преобладающими становятся более крупные частицы песка и пыли.

С переносом пыли и динамикой сезонных изменений полярных шапок связана и природа знаменитой «волны потемнения», распространяющейся с наступлением весны от широты примерно 70o к экватору со скоростью около 5 м/с, так что до экватора она докатывается меньше чем за два земных месяца, покрывая расстояние свыше 4000 км. К лету, когда шапка уменьшается до минимальных размеров, темная полоса достигает широты 40o в противоположном полушарии, а к осени, с началом роста шапки, быстро откатывается назад, и «моря» светлеют. В увлекательной теории Ловелла это объяснялось весенним пробуждением и быстрым распространением растительности вдоль живительных артерий каналов, заполняемых водой с началом таяния шапки. Эта грандиозная ирригационная система высокоразвитых марсиан рассматривалась им как единственно мыслимое средство противостоять суровой природе на планете, преобладающими ландшафтами которой являются пустыни, а вода в условиях сухой и менее плотной, чем земная, атмосферы быстро испаряется.

Обилие и интенсивный перенос пыли объясняют и то, почему не было найдено скольконибудь определенной взаимосвязи неоднородностей рельефа с отражательными свойствами (альбедо) поверхности Марса, а также, почему для большинства районов планеты характерна малая плотность грунта. Альбедо поверхности претерпевает значительные изменения, и многие черты рельефа попросту маскируются. Иногда возникают мощные пылевые вихри, неслучайно называемые «пылевыми дьяволами». Ситуация приобретает глобальный характер в период пылевых бурь грандиозного природного явления, периодически охватывающего всю планету. Пыль во время бурь поднимается на высоту до 10 и более километров, так что выступающими над этой сплошной пеленой оказываются только вершины крупнейших вулканов, а вся остальная поверхность приобретает ровный желтый фон, без какихлибо деталей.

4. Реки и ледники на Марсе.

Бомбардировка метеоритами, глобальная тектоника, широко развитый вулканизм и ветровая эрозия не единственные активные процессы, формировавшие поверхность Марса. На фотоснимках, переданных космическими аппаратами, обнаруживаются длинные ветвящиеся долины протяженностью в сотни километров, по своей морфологии напоминающие высохшие русла земных рек, выглаженные ложбины и другие характерные конфигурации, свидетельствующие также о водной и ледниковой эрозии. Это приводит к предположению, что в некоторый период марсианской истории поверхность планеты бороздили потоки воды, образовавшие русла с развитой системой притоков, и перемещались ледники. Они образовали в областях ледникового сноса, при обтекании кратеров, каплевидные острова и другие формы разрушения горных пород и выпахивания поверхности. Например, на рис.4 отчетливо видны следы мощного выглаживания, вероятнее всего вызванного ледниками, но, возможно, определенную роль здесь сыграла и вода, при течении которой образовались протоки между локальными уплотнениями материала поверхности. Наибольшие уплотнения, однако, связаны с кратерами ударного происхождения, поперечники которых на рис.4 достигают 1015 км.

О водном происхождении сохранившихся многочисленных русел, общее число которых оценивается в несколько десятков тысяч, говорит и факт перепада высот в направлении течения древних рек от истока к устью. Часть этих русел протянулась между углублениями на кратерированных участках поверхности, повидимому, служивших местными водными резервуарами.

Насколько древними являются речные русла, корытообразные долины, оставленные ледниками, и некоторые другие образования, явно свидетельствующие о присутствии воды на поверхности Марса? К какому периоду (или периодам) марсианской истории относятся эти события? Данная проблема, как и проблема общих запасов воды на Марсе, непосредственно связана с палеоклиматом планеты, химическим составом и эволюцией ее атмосферы. Четкость многих сохранившихся флювиогляциальных форм, отсутствие следов их захоронения позднейшими наслоениями указывают на относительно недавнее происхождение, в пределах последнего миллиарда лет. По конфигурации некоторых желобов на склонах возвышенностей можно даже предполагать, что с них когдато стекали дождевые потоки ситуация, совершенно невозможная в современных условиях на Марсе при ничтожном содержании в атмосфере водяного пара и очень низком атмосферном давлении у поверхности, при котором вода в жидком виде практически не удерживается, быстро испаряясь.

Исходя из общих геохимических закономерностей о высвобождении воды из планетных недр, подкрепленных теперь явно выраженными признаками вулканической деятельности на всех планетах земной группы, многие исследователи уже давно высказали идею о том, что основные водные массы на Марсе сосредоточены в приповерхностном слое вечной мерзлоты, особенно в слоях наносов и в крупных равнинных бассейнах типа Эллады. Не исключалась даже возможность того, что за счет обычного геотермического температурного градиента внутри этих бассейнов под слоем льда температура может оказаться достаточной для сохранения воды в жидком состоянии. Такое предположение было высказано советскими учеными А.И.Лебединским и В.Д.Давыдовым.

В пользу представлений о существовании на Марсе обширных районов вечной мерзлоты действительно свидетельствует ряд деталей. К ним, в частности, относятся специфические долины с обнажением на их склонах внутренних пустот типа карстовых на Земле. Весьма вероятно, что они образовались при первоначальном обнажении и последующей сублимации ледяных прослоев (линз) и что подобных резервуаров, покрытых сыпучим грунтом, сохранилось на Марсе довольно много. Примерно аналогичную природу могут иметь встречающиеся на планете территории с хаотическим рельефом, содержащие замысловато изломанные блоки горных пород. Они, вероятнее всего, образовались за счет проседания наружных слоев вследствие ухода подповерхностного материала. О районах вечной мерзлоты свидетельствуют также специфические формы выбросов на внешних склонах некоторых кратеров, напоминающие снежные лавины. Происхождение таких конфигураций, не имеющих аналогов на других планетах, можно объяснить плавлением подповерхностного льда при ударе метеорита и стеканием грязевых потоков по склонам образовавшегося кратера.

Обширные области вечной мерзлоты на Марсе дают основание предположить наличие на его поверхности изверженных пород типа палагонитов стекловатого минерала желтобурого (или темнобурого) цвета, встречающегося на Земле в базальтах, диабазах и туфах преимущественно в полярных районах. Палагониты образуются при взаимодействии магмы с водой или при извержении ее сквозь ледовую толщу. Они богаты железом и обеднены кремнием, что как раз подтверждается анализом элементного состава пород на поверхности Марса. Вместе с тем изза меньшего атмосферного давления марсианские палагониты могут отличаться от земных меньшим содержанием летучих элементов и менее прочной структурой.

При определенных условиях, когда за счет падения метеорита, вулканического извержения или другого местного геотермального источника происходит таяние льда, на поверхности Марса могли бы образовываться (или вскрываться) водные резервуары.

Эту проблему исследовали известный американский планетолог К.Саган вместе с Д.Уоллесом. Их расчеты показали, что испарение очень быстро практически прекращается за счет появления на жидкой поверхности ледяного покрова, достигающего толщины не менее метра. Чем меньше давление атмосферы, тем интенсивнее испарение и тем сильнее охлаждение поверхности за счет высвобождения скрытой теплоты испарения, а значит, толще образующийся слой льда. В конечном итоге толщина ледяного покрова в среднем должна составлять 1030 метров, что соответствует условиям равновесия между его ростом и сублимацией. Как известно, лед является хорошим теплоизоляционным материалом, и одновременно он достаточно прозрачен для солнечных лучей, которые частично проникают сквозь него и поглощаются в самой водной толще. Вместе с высвобождающейся скрытой теплотой плавления на нижней поверхности льда это препятствует дальнейшему промерзанию резервуара, обеспечивая сохранение в нем жидкой воды.

Все это привело авторов к интересной гипотезе о существовании на Марсе не только обширных водоемов (озер) под слоем вечной мерзлоты, но и о продолжающемся поныне течении рек, скованных ледяным щитом только с поверхности. А если это действительно так, то естественно предположить, что формирование по крайней мере некоторых из наблюдаемых русел происходило непрерывно. Можно было бы возразить, что большинство замерзших рек, вероятно, покрыто песчаными наносами и что в этом случае резко уменьшается как скорость сублимации, так и количество проникающего внутрь тепла, а значит, условие равновесия смещается. Действительно, в таких местах ледяной покров, вероятно, толще, однако вследствие регулярного переноса пыли условия могут изменяться.

Противоположный эффект должен наблюдаться при увеличении инсоляции, приводящей к уменьшению толщины ледяного покрова. На определенных участках поверхности, где промерзание было полным, возможно появление под слоем льда жидкой воды, так что этот слой по существу становится айсбергом. Такая ситуация могла бы, в частности, возникать в приполярных областях вследствие периодического изменения наклона оси вращения Марса относительно плоскости эклиптики. При таянии южной полярной шапки, которая в современную эпоху стаивает почти целиком вследствие заметного эксцентриситета орбиты планеты, обнаруживаются слои, образованные осадочными породами. В этих концентрических наслоениях вокруг полюса различается несколько сот слоев толщиной от единиц до десятков метров, имеющих вид террас. Такие структуры можно объяснить деятельностью ледников полярной шапки при изменении наклона оси планеты, от которого сильно зависит интенсивность их таяния. Предполагается, что последовательные процессы отложения осадков при таянии ледников с образованием «водяных подушек» и айсбергов, частично сглаживавших при своем перемещении неровности рельефа, происходили с периодом в сотни тысяч лет.

Белые полярные шапки Марса одна из наиболее примечательных черт на диске планеты, хорошо наблюдаемых в телескоп. Аналогичным образом выделялись бы полярные области Земли при наблюдении, например с Марса, особенно далеко простирающиеся к средним широтам обширные заснеженные пространства северного полушария зимой. Однако до недавнего времени велись споры о том, из чего состоят марсианские шапки из обычного, водяного льда или твердой углекислоты. Последнее предположение связано с тем, что на полюсах отмечается самая низкая температура поверхности Марса, 148K=125o C. А это как раз соответствует температуре замерзания углекислоты, из которой преимущественно состоит марсианская атмосфера. Измерения с космических аппаратов показали, что в общемто правы были защитники как той, так и другой гипотезы, однако в основной своей массе полярные шапки образованы обычным льдом. Оказалось, что интенсивный рост шапок происходит в период с начала марсианской осени до начала весны в соответствующем полушарии за счет конденсации из атмосферы углекислоты. При этом образуется слой сухого льда толщиной в несколько сантиметров, быстро исчезающий с наступлением весны. После этого остается нестаивающая за лето часть, имеющая температуру около 70o C(203K), то есть значительно превышающую температуру замерзания углекислоты. Онато и состоит в основном из обычного льда, покрываемого, как и прилегающая поверхность, слоем углекислоты в зимнее время. Весьма вероятно, что шапки содержат также обширные включения газовых гидратов так называемых клатратов, представляющих собой соединения, которые образуются при внедрении молекул углекислого газа (или других газов) в пустоты кристаллической структуры водяного льда. По внешнему виду они напоминают спрессованный снег и хорошо известны прежде всего как побочный продукт при добыче природного газа. На Марсе клатраты, возможно, образуются и в средних широтах ночью, особенно внутри углублений и кратеров, как это было замечено на фотопанорамах «Викингов». С восходом Солнца конденсат быстро сублимирует. Измеренные температуры как раз хорошо соответствует фазовому переходу при образовании и исчезновении клатратов CO2 . Тем не менее, окончательного отождествления пока не сделано, поэтому как эти, так и другие обширные белые образования на дне некоторых кратеров, обнаруживаемые на снимках с орбитальных аппаратов, получили пока условное название «белая порода».

Толщина северной полярной шапки может быть сопоставимой с толщиной ледяного панциря Антарктиды, достигающей 4,3 км, а отношение площади этого панциря к площади земной поверхности меньше, чем нестаивающей части шапки к площади поверхности Марса. Но лед Антарктиды содержит свыше 90% запасов всей пресной воды на Земле, и нельзя исключить, что подобный резервуар существует и на Марсе.

Все, что связано с водой на Марсе чрезвычайно важно для понимания общих проблем планетной эволюции. Сейчас о предполагаемых водных резервуарах ученые судят только по косвенным данным, прямых доказательств их существования пока нет. Эти доказательства могут дать только эксперименты.

5.Фобос и Деймос.

Важнейшим критерием для оценок возраста тех или иных структур на поверхности планеты служит число кратеров ударного происхождения в зависимости от их размеров и степени разрушения. Однако в условиях сильной эрозии трудно установить истинную плотность кратеров на Марсе. К тому же плотность кратеров в отдельных районах может быть частично связана с позднейшей вулканической активностью, а не только с возрастом древних форм рельефа. На наиболее сильно кратерированных участках поверхности число кратеров и их распределение по размерам сравнимы со степенью насыщенности лунной поверхности, в то время как на других участках они практически отсутствуют.

Своего рода контрольную цифру для получения сравнительной оценки числа соударений, которым подвергалась поверхность всей планеты за геологическую историю, дает изучение поверхности спутников Марса Фобоса и Деймоса. Поскольку спутники лишены атмосферы и находятся в той же области Солнечной системы, что и сама планета, такое сравнение кажется правомерным. Оно свидетельствует об очень высокой эффективности процессов эрозии на Марсе, поскольку насыщенность кратерами поверхностей спутников выше.

Спутники Марса имеют очень низкую отражательную способность (альбедо меньше 5%), их можно отнести к наиболее темным объектам среди астероидов в Солнечной системе. Из материалов, обладающих столь низким альбедо, наиболее вероятны углистые хондриты, представляющие собой неплотное темное углистое вещество, богатое гидратированными силикатами, газами и даже органическими соединениями. Они образуют небольшую группу среди обычных хондритов самого распространенного класса каменных метеоритов, содержащих наибольшее количество легких летучих элементов. Предположение об углистых хондритах и сравнительно малая плотность спутников (около 2 г/см3 ) не противоречат наиболее вероятной модели их строения, согласно которой рыхлым материалом образованы только внешние слои, окружающие более плотные недра. Видимо, их поверхности покрыты слоем пыли вследстви

Учебная работа № 1902. Марс

Яндекс.Метрика