Учебная работа № 1716. Практикум по предмету Математические методы и модели

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (6 оценок, среднее: 4,67 из 5)
Загрузка...
Контрольные рефераты

Учебная работа № 1716. Практикум по предмету Математические методы и модели

Министерство образования Российской Федерации

ЮжноУральский государственный университет

Кафедра «Экономика и инвестиции»

_

_

Габрин К.Э.

МАТЕМАТИЧЕСКИЕ МЕТОДЫ И МОДЕЛИ

Семестровое задание

и методические указания к решению задач

Челябинск

Издательство ЮУрГУ

2000

УДК

ББК

Габрин К.Э., Математические методы и модели: Семестровое задание и методические рекомендации к решению задач. – Челябинск: Издательство ЮУрГУ, 2000. – 39 с.

Приведены задачи семестрового задания, методические указания к их решению, примеры вычислений, рекомендуемая литература и приложения.

Пособие предназначено для студентов специальностей 060811, 061101, 061120.

Табл. 12, прилож. 4, список лит. – 13 назв.

Одобрено учебнометодической комиссией факультета «Экономика и управление».

Рецензент: Никифоров К.В.

Задача 1

Многофакторный регрессионный и корреляционный анализ

Варианты задач с 1 по 25 с указанием результативного y и факторных x1 , x2 признаков приведены в табл. 1.

По выборочным данным, представленным в табл. 2 и табл. 3, исследовать на основе линейной регрессионной модели зависимость результативного признака от показателей производственнохозяйственной деятельности предприятий.

Таблица 1

Варианты задач

№ вар. Результативный признак Факторные признаки № вар. Результативный признак Факторные признаки
1 y1 x1 ,x3 14 y3 x1 ,x14
2 y2 x1 ,x5 15 y2 x5 ,x9
3 y2 x1 ,x7 16 y3 x8 ,x10
4 y2 x1 ,x11 17 y3 x7 ,x14
5 y2 x1 ,x10 18 y3 x3 ,x6
6 y1 x3 ,x4 19 y3 x1 ,x14
7 y2 x3 ,x11 20 y1 x2 ,x6
8 y2 x11 ,x5 21 y1 x3 ,x7
9 y1 x3 ,x5 22 y2 x5 ,x8
10 y2 x11 ,x6 23 y2 x9 ,x10
11 y2 x1 ,x6 24 y3 x4 ,x11
12 y2 x1 ,x12 25 y3 x1 ,x12
13 y2 x1 ,x2

Таблица 2

Обозначения и наименование показателей

производственнохозяйственной деятельности предприятий

Обозначение показателя

Наименование показателя

y1 Производительность труда, тыс.руб./чел.
y2 Индекс снижения себестоимости продукции
y3 Рентабельность
x1 Трудоемкость единицы продукции
x2 Удельный вес рабочих в составе ППР
x3 Удельный вес покупных изделий
x4 Коэффициент сменности оборудования, смен
x5 Премии и вознаграждения на одного работника ППР, тыс.руб.
x6 Удельный вес потерь от брака,%
x7 Фондоотдача активной части ОПФ, руб./руб.
x8 Среднегодовая численность ППР, чел.
x9 Среднегодовая стоимость ОПФ, млн.руб.
x10 Среднегодовой фонд заработной платы ППР
x11 Фондовооруженность труда, тыс.руб./чел.
x12 Оборачиваемость нормируемых оборотных средств, дн.
x13 Оборачиваемость ненормируемых оборотных средств, дн.
x14 Непроизводительные расходы, тыс.руб.

Таблица 3

Исходные данные для расчета

y1 y2 y3 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14
1 9,4 62 10,6 0,23 0,62 0,4 1,35 0,88 0,15 1,91 7394 39,53 14257 5,35 173,9 11,88 28,13
2 9,9 53,1 9,1 0,43 0,76 0,19 1,39 0,57 0,34 1,68 11586 40,41 22661 3,9 162,3 12,6 17,55
3 9,1 56,5 23,4 0,26 0,71 0,44 1,27 0,7 0,09 1,89 7801 37,02 14903 4,88 101,2 8,28 19,52
4 5,5 30,1 9,7 0,43 0,74 0,25 1,1 0,84 0,05 1,02 6371 41,08 12973 5,65 177,8 17,28 18,13
5 6,6 18,1 9,1 0,38 0,72 0,02 1,23 1,04 0,48 0,88 4210 42,39 6920 8,85 93,2 13,32 21,21
6 4,3 13,6 5,4 0,42 0,68 0,06 1,39 0,66 0,41 0,62 3557 37,39 5736 8,52 126,7 17,28 22,97
7 7,4 89,8 9,9 0,30 0,77 0,15 1,38 0,86 0,62 1,09 14148 101,7 26705 7,19 91,8 9,72 16,38
8 6,6 76,6 19,1 0,37 0,77 0,24 1,35 1,27 0,5 1,32 15118 81,32 28025 5,38 70,6 8,64 16,16
9 5,5 32,3 6,6 0,34 0,72 0,11 1,24 0,68 1,2 0,68 6462 59,92 11049 9,27 97,2 9,0 20,09
10 9,4 199 14,2 0,23 0,79 0,47 1,4 0,86 0,21 2,3 24628 107,3 45893 4,36 80,3 14,76 15,98
11 5,7 90,8 8 0,41 0,71 0,2 1,28 0,45 0,66 1,43 1948 80,83 36813 4,16 128,5 10,44 22,76
12 5,2 82,1 17,5 0,41 0,79 0,24 1,33 0,74 0,74 1,82 18963 59,42 33956 3,13 94,7 14,76 15,41
13 10,0 76,2 17,2 0,22 0,76 0,54 1,22 1,03 0,32 2,62 9185 36,96 17016 4,02 85,3 20,52 19,35
14 6,7 37,1 12,9 0,31 0,79 0,29 1,35 0,96 0,39 1,24 6391 37,21 11688 5,82 85,3 7,92 14,63
15 9,4 51,6 13,2 0,24 0,70 0,56 1,2 0,98 0,28 2,03 6555 32,87 12243 5,01 116,6 18,72 22,62

Методические указания к решению задачи 1

Множественный корреляционный анализ состоит в оценке корреляционной матрицы генеральной совокупности по выборке и определении на ее основе оценок частных и множественных коэффициентов корреляции и детерминации.

Парный и частный коэффициенты корреляции характеризуют тесноту линейной зависимости между двумя переменными соответственно на фоне действия и при исключении влияния всех остальных показателей, входящих в модель. Диапазон изменения этих коэффициентов [1;1].

Множественный коэффициент корреляции характеризует тесноту связи между одной переменной (результативной) и остальными, входящими в модель. Диапазон изменения этого коэффициента [0;1].

Квадрат множественного коэффициента корреляции называется множественным коэффициентом детерминации; он характеризует долю дисперсии одной переменной (результативной), обусловленной влиянием остальных, входящих в модель.

Дополнительная задача корреляционного анализа (основная – в регрессионном) – оценка уравнения регрессии.

Исходной для анализа является матрица X размерности (n´k), которая представляет собой n наблюдений для каждого из k факторов. Оцениваются: вектор средних X ср , вектор среднеквадратических отклонений S и корреляционная матрица R :

X ср =(x1 ср , x2 ср ,…, xj ср ,…, xk ср );

S =(s1 , s2 , …, sj , …, sk );

1 r12 r1k
R = r21 1 r2k
rk1 rk2 1

где rjl =[S (xij xjср )(xil xlср )]/(nsj sl ), j,l=1,2,…,k;

sj =([S (xij xj ср )2 ]/n)0,5 , i=1…n;

xil – значение iтого наблюдения jтого фактора.

Кроме того, находятся оценки частных и множественных коэффициентов корреляции любого порядка. Например, частный коэффициент корреляции порядка k2 между факторами X1 и X2 равен

r12/3,4,…,k =R12 /(R11 R22 )0,5 ,

где Rjl – алгебраическое дополнение элемента r12 матрицы R .

Множественный коэффициент корреляции порядка k1 фактора X1 (результативного признака) определяется по формуле

r1/2,3,…,k = r1 =(|R 12 |/R11 )0,5 ,

где |R 12 |– определитель матрицыR.

Значимость парных и частных коэффициентов корреляции проверяется по tкритерию Стьюдента. Наблюдаемое значение критерия находится по формуле

tнабл =(nl2)0,5 r/(1r2 )0,5 ,

где r – оценка коэффициента, l – порядок коэффициента корреляции (число фиксируемых факторов).

Коэффициент корреляции считается значимым (т.е. гипотеза H0 : r=0 отвергается с вероятностью ошибки a), если |tнабл |>tкр , определяемого по таблицам tраспределения (Приложение 1) для заданного a иn=nl2.

Значимость множественного коэффициента корреляции (или его квадрата – коэффициента детерминации) определяется по Fкритерию. Наблюдаемое значение, например, для r2 1/2,…k , находится по формуле

Fнабл = [r2 1/2,…k /(k1)]/[(1r2 1/2,…k )/(nk)].

Множественный коэффициент корреляции считется значимым, если Fнабл >Fкр (a, k1, nk), где Fкр определяется по таблице Fраспределения (Приложение 1) для заданных a, n1 =k1 и n2 =nk.

Множественный регрессионный анализ – это статистический метод исследования зависимости случайной величины y от переменных xj , рассматриваемых как неслучайные величины независимо от истинного закона распределения xj . Предполагается, что y имеет нормальный закон распределения с условным мат. ожиданием y=j(x1 ,x2 ,…,xk ), являющимся функцией от аргументов xj , и с постоянной, не зависящей от аргументов дисперсией s2 . Наиболее часто встречаются линейные уравнения регрессии вида y=b0 +b1 x1 +b2 x2 +…+bj xj +…+bk xk , линейные относительно неизвестных параметров bj (j=0,1,…,k) и аргументов xj .

Коэффициент регрессии bj показывает, на какую величину в среднем изменится результативный признак y, если переменную xj увеличить на единицу ее измерения, т.е. является нормативным коэффициентом.

В матричной форме регрессионная модель имеет вид

Y =X b +e ,

где Y – случайный векторстолбец размерности [n´1] наблюдаемых значений результативного признака (y1 ,y2 ,…,yn ); X – матрица размерности [n´ (k+1)] наблюдаемых значений аргументов. Элемент матрицы xij рассматривается как неслучайная величина (i=1,2,…,n; j=0,1,2,…,k; xоi =1);b – векторстолбец размерности [(k+1)´1] неизвестных коэффициентов регрессии модели; e – случайный векторстолбец размерности [n´1] ошибок наблюдений (остатков). Компоненты вектора независимы между собой, имеют нормальный закон распределения с нулевым мат. ожиданием и неизвестной дисперсией. На практике рекомендуется, чтобы n превышало k как минимум в три раза.

Находится оценка уравнения регрессии вида

y*=b0 +b1 x1 +b2 x2 +…+bj xj +…+bk xk .

Cогласно методу наименьших квадратов вектор оценок коэффициентов регрессии определяется по формуле

b=(XT X)1 XT Y ,

где

1 x11 x1k y1 b0
. . . . .
. . . . .
X= 1 xi1 xik Y= yi b = bj
. . . . .
. . . . .
1 xn1 xnk yn bk

XT – транспонированная матрица X ;(XT X)–1 – матрица, обратная к матрице XT X .

Оценка ковариационной матрицы коэффициентов регрессии вектора b определяется из выражения

S* (b)=S*2 (XT X ) 1 ,

где S*2 =(Y Xb )T (Y Xb )/(nk1).

Учитывая, что на главной диагонали ковариационной матрицы находятся дисперсии коэффициентов регрессии, имеем

S*2 b (j–1) = S*2 [(XT X ) 1 ]jj для j=1,2,…,k, k+1.

Значимость уравнения регрессии, т.е. гипотеза H0 : b=0 (b0 =b1 =…=bk =0), проверяется по Fкритерию, наблюдаемое значение которого определяется по формуле

Fнабл =(QR /(k+1))/(Qост /(nk1)),

где QR =(Xb )T (Xb ), Qост =(Y Xb )T (Y Xb ).

По таблице Fраспределения (Приложение 1) для заданных a, n1 =k+1, n2 =nk1 находят Fкр .

Гипотеза H0 отклоняется с вероятностью a, если Fнабл >Fкр . Из этого следует, что уравнение является значимым, т.е. хотя бы один из коэффициентов регрессии отличен от нуля.

Для проверки значимости отдельных коэффициентов регрессии, т.е. гипотез H0 : bj =0, где j=1,2,…,k, используют tкритерий и вычисляют tнабл (bj )=bj /S*b j .По таблице tраспределения (Приложение 1) для заданных a, n=nk1 находят tкр .

Гипотеза H0 отвергается с вероятностью ошибки a, если êtнабл ê>tкр . Из этого следует, что соответствующий коэффициент регрессии bj значим, т.е. bj ¹ 0. В противном случае коэффициент регрессии незначим и соответствующая переменная в модель не включается. После этого реализуется алгоритм пошагового регрессионного анализа, состоящий в том, что исключается одна из незначимых переменных, которой соответствует минимальное по абсолютной величине значение tнабл . После этого вновь проводят регрессионный анализ с числом факторов, уменьшенным на единицу. Алгоритм заканчивается получением уравнения регрессии со значимыми коэффициентами.

Для решения задачи требуется:

1. Найти оценку уравнения регрессии вида y=b0 +b1 x1 +b2 x2 .

2. Проверить значимость уравнения регрессии при a=0,05 или a=0,01.

3. Проверить значимость коэффициентов регрессии.

4. Дать экономическую интерпретацию коэффициентам регрессии и оценить адекватность полученной модели по величине абсолютных ei и относительных di отклонений.

5. При необходимости перейти к алгоритму пошагового регрессионного анализа, отбросив один из незначительных коэффициентов регрессии.

6. Построить матрицы парных и частных коэффициентов корреляции.

7. Найти множественные коэффициенты корреляции и детерминации.

8. Проверить значимость частных и множественных коэффициентов корреляции.

9. Провести содержательный экономический анализ полученных результатов.

Пример решения задачи 1

По данным годовых отчетов десяти (n=10) предприятий (табл.4) провести анализ зависимости себестоимости товарной продукции y (млн. р.) от объема валовой продукции x1 (млн. р.) и производительности труда x2 (тыс. р. на чел.).

Таблица 4

Исходная информация для анализа и результаты расчета
Исходная информация Результаты расчета
xi1 xi2 yi y*i (y*i )2 ei =yi y*i (ei )2 di = ei / y*i
1 3 1,8 2,1 2,31572 5,36255 0,21572 0,04653 0,09315
2 4 1,5 2,8 3,48755 12,16300 0,68755 0,47273 0,19714
3 5 1,4 3,2 4,35777 18,99015 1,15777 1,34043 0,26568
4 5 1,3 4,5 4,50907 20,33171 0,00907 0,00008 0,00201
5 5 1,3 4,8 4,50907 20,33171 0,29093 0,08464 0,064521
6 5 1,5 4,9 4,20647 17,69439 0,69353 0,48098 0,164872
7 6 1,6 5,5 4,77408 22,79184 0,72592 0,52696 0,152054

Окончание табл. 4

Исходная информация Результаты расчета
xi1 xi2 yi y*i (y*i )2 ei =yi y*i (ei )2 di = ei / y*i
8 7 1,2 6,5 6,09821 37,18816 0,40179 0,16144 0,065887
9 15 1,3 12,1 11,6982 136,84905 0,40175 0,16140 0,034343
10 20 1,2 15,0 15,4441 238,52177 0,44415 0,19727 0,02876
Сред. знач. S = 530,22437 S = 3,47247
7,5 1,41 6,14
y*i – значения, вычисленные по уравнению регрессии
ei – абсолютные ошибки аппроксимации
di – относительные ошибки аппроксимации
Решение

1. Определение вектора b оценок коэффициентов

уравнения регрессии

Расчет оценок коэффициентов уравнения регрессии y*=b0 +b1 x1 +b2 x2 производится по уравнению b=(XT X)–1 XT Y :

n S xi1 S xi2 10 75 14,1
XT X = S xi1 S x2 i1 S xi1 xi2 = 75 835 100,4
S xi2 S xi1 xi2 S x2 i2 14,1 100,4 20,21
S yi 61,4 b0 2,88142
XT Y = S xi1 yi = 664,5 b = b1 = 0,71892
S xi2 yi 82,23 b2 1,51303

Таким образом, оценка уравнения регрессии примет вид

y*=2,88142+0,71892x1 1,51303x2 .

2. Проверка значимости уравнения y*=2,88142+0,71892x1 1,51303x2 .

а) QR =(Xb )T (Xb )=S y*i =530,224365;

б) Qост =(Y Xb )T (Y Xb )=S e2 i =3,472465;

в) несмещенная оценка остаточной дисперсии:

S*2 = Qост /(n3)=3,472465 / 7 = 0,496066;

г) оценка среднеквадратичного отклонения:

S*= 0,7043195;

д) проверяем на уровне a=0,05 значимость уравнения регрессии, т.е. гипотезу H0 : b=0 (b0 =b1 =b2 =0). Для этого вычисляем

Fнабл =(QR /(k+1))/(Qост /(nk1))=(530,224365 / 3))/(3,472465 / 7))=356,32776.

Далее по таблице Fраспределения для a=0,05, n1 =k+1=3, n2 =nk1=7 находим Fкр =4,35. Так как Fнабл >Fкр (356,32776>4,35), то гипотеза H0 отвергается с вероятностью ошибки 0,05. Т.о. уравнение является значимым.

3. Проверка значимости отдельных коэффициентов регрессии

а) Найдем оценку ковариационной матрицы вектора b :

5,52259 0,08136 3,44878
S* (b)=S*2 (XT X ) 1 =0,496066(XT X ) 1 = 0,08136 0,00267 0,04348
3,44878 0,04348 2,21466

Так как на главной диагонали ковариационной матрицы находятся дисперсии коэффициентов уравнения регрессии, то получим следующие несмещенные оценки этих дисперсий:

S*2 b 0 =5,52259; S*2 b 1 =0,00267; S*2 b 0 =2,21466;

S*b 0 =2,35002; S*b 1 =0,05171; S*b 2 =1,48818.

Найдем оценку корреляционной матрицы вектора b . Элементы этой матрицы определяются по формуле:

rj1l1 =cov*(bj1 ,bl1 )/(S*b j1 S*b l1 ),

где cov*(bj1 ,bl1 ) – элементы матрицы S* (b), стоящие на пересечении jтой строки и l того столбца ( j,l =1,2,3).

Корреляционная матрица вектора b имеет вид:

1 0,66955 0,98614
R* (b)= 0,66955 1 0,56504
0,98614 0,56504 1

Далее, для проверки значимости отдельных коэффициентов регрессии, т.е. гипотез H0 : bm =0 (m=1,2), по таблицам tраспределения для a=0,05, n=7 находим tкр =2,365. Вычисляем tнабл для каждого из коэффициентов регрессии по формуле tнабл (bj )=bj /S*b j :

tнабл (b1 )=b1 /S*b 1 =0,71892/0,05171=13,903

tнабл (b2 )=b2 /S*b 2 =1,51303/1,48818=1,01667.

Так как tнабл (b1 ) > tкр (13,903 > 2,365), tнабл (b2 ) < tкр (1,01667< 2,365), то коэффициент регрессии b1 ¹0, а коэффициент регрессии b2 =0. Следовательно переходим к алгоритму пошагового регрессионного анализа.

4. Пошаговый регрессионный анализ

Будем рассматривать оценку нового уравнения регрессии вида

y*=b’0 +b’1 x1 . Вектор оценок b’ определим по формуле b=(XT ¢ X ¢ )–1 XT ¢ Y , где

n S xi1 10 75
XT ¢X¢= S xi1 S x2 i1 = 75 835
S yi 61,4 b’0 0,52534
XT ¢Y¢= S xi yi = 664,5 b¢= b’1 = 0,74861

Таким образом, оценка уравнения регрессии примет вид:

y*=0,52534+0,74861x1 .

Повторив далее вычисления по пп 2 и 3, определяем, что новая оценка уравнения регрессии и его коэффициент значимы при a=0,05.

5. Нахождение матрицы парных коэффициентов корреляции

(на примере без исключения переменной)

а) находим вектор средних:

X ср =(x1 ср ; x2 ср ; yср )=(7,5; 1,41; 6,14);

б) находим вектор среднеквадратических отклонений S =(s1 ; s2 ; sy ) по формуле sj =([S (xij xj ср )2 ]/n)0,5 , i=1…n:

S =(5,22; 0,18; 3,91);

в) формируем корреляционную матрицу

1 r12 r1y
R = r21 1 r2y
ry1 ry2 1

где r12 =r21 =[(x1 x2 )ср x1ср x2ср ]/(s1 s2 ), ryj =rjy =[(xj y)ср xjср yср ]/(sj sy ):

1 0,565 0,997
R = 0,565 1 0,612
0,997 0,612 1

6. Расчет оценок частных коэффициентов корреляции

Оценки частных коэффициентов корреляции определяются по формулам:

r12/y =(r12 r1y r2y )/[(1r1y 2 )(1r2y 2 )]0,5 =0,738;

r1y/2 =(r1y r12 ry2 )/[(1r12 2 )(1ry2 2 )]0,5 =0,998;

r2y/1 =(r1y r12 ry2 )/[(1r12 2 )(1ry2 2 )]0,5 =0,762.

Составим матрицу частных коэффициентов корреляции:

1 0,738 0,998
0,738 1 –0,762
0,998 –0,762 1

Следует иметь в виду, что частный коэффициент корреляции может резко отличаться от соответствующего парного коэффициента и даже иметь противоположный знак. Любой из частных коэффициентов может быть равен нулю, в то время, как парный – отличен от нуля.

В данном примере r12/y =0,738, а r12 =0,565. Такое различие вызвано тесной связью объема валовой продукции (x1 ) и себестоимостью товарной продукции (y): r1y =0,997. В случае независимости величин частный и парный коэффициенты корреляции равны нулю.

7. Проверка значимости парных и частных

коэффициентов корреляции

Проверка осуществляется с помощью таблиц tраспределения Стьюдента.

Для r12 : |tнабл |=|(102)0,5 (0,565)/(1(0,565)2 )0,5 |=1,93683<tкр (8;0,05) =2,306; гипотеза H0 : r12 =0 принимается с вероятностью ошибки 0,05; отвергается с вероятностью ошибки 0,1 (|tнабл |=1,93683>tкр (8;0,1) =1,86).

Для r2y : |tнабл |=|(102)0,5 (0,612)/(1(0,612)2 )0,5 |=2,20621<tкр (8;0,05) =2,306; гипотеза H0 : r2y =0 принимается с вероятностью ошибки 0,05; отвергается с вероятностью ошибки 0,1 (|tнабл |=1,93683 > tкр (8;0,1) =1,86).

Для r1y : |tнабл |=|(102)0,5 0,997/(10,9972 )0,5 |=36,43263>tкр (8;0,05) =2,306; гипотеза H0 : r1y =0 отвергается с вероятностью ошибки 0,05.

Для r12/y : |tнабл |=|(n3)0,5 0,738/(10,7382 )0,5 |=2,893542>tкр (7;0,05) =2,365; гипотеза H0 : r12/y =0 отвергается с вероятностью ошибки 0,05.

Для r1y/2 : |tнабл |=|(n3)0,5 0,998/(10,9982 )0,5 |=41,77023>tкр (7;0,05) =2,365; гипотеза H0 : r1y/2 =0 отвергается с вероятностью ошибки 0,05.

Для r2y/1 : |tнабл |=|(n3)0,5 (0,762)/(1(0,762)2 )0,5 |=3,11324>tкр (7;0,05) =2,365; гипотеза H0 : r2y/1 =0 отвергается с вероятностью ошибки 0,05.

8. Расчет оценок множественных коэффициентов

корреляции и детерминации

Оценки множественных коэффициентов корреляции детерминации рассчитываются по формулам:

ry/12 = (ry1 2 + ry2 2 + 2ry1 ry2 r12 )/(1r12 2 )(1ry2 2 )]0,5 =0,999;

ry/12 2 =0,9992 =0,997.

9. Проверка значимости множественных коэффициентов

корреляции и детерминации

Проверим гипотезу H0 : r2 y/12 =0 по Fкритерию. Наблюдаемое значение находится по формуле:

Fнабл = [r2 y/12 /(k1)]/[(1ry/12 )/(nk)]=[0,997/(31)]/[(10,997)/(103)]=1163.

По таблице Fраспределения для a=0,05, n1 =k1=2, n2 =nk=7 находим Fкр =4,74. Так как Fнабл >Fкр , то гипотеза о равенстве r2 y/12 =0 отвергается.

Аналогично осуществляется проверка гипотезы ry/12 =0 (в данном примере опущено).

Тем самым доказана значимость множественного коэффициента корреляции, что говорит о наличии зависимости y от x1 и x2 , т.е. себестоимость действительно зависит от объема валовой продукции и производительности труда.

Литература к задаче 1

1. Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика: Исследование зависимостей.–М.:Финансы и статистика, 1985

2. Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика: Основы моделирования и первичной обработки данных.–М.:Финансы и статистика, 1983

3. Львовский Е.Н. Статистические методы построения эмпирических формул.–М.:Высш.шк., 1988.

4. Шепелев И.Г. Математические методы и модели управления в строительстве.–М.:Высшая школа, 1980.

Задача 2

Динамическое программирование

Для увеличения объемов выпуска пользующейся повышенным спросом продукции, изготавливаемой тремя предприятиями, выделены капитальные вложения в объеме 700 млн.руб. Использование iтым предприятием xi млн. руб. из указанных средств обеспечивает прирост выпуска продукции, определяемый значением нелинейной функции fi (xi ).

Найти распределение капитальных вложений между предприятиями, обеспечивающее максимальное увеличение выпус6ка продукции.

Исходные данные приведены в таблицах 5 и 6.

Таблица 5

Исходные данные

Объем

кап.вложений xi , млн.руб.

Прирост выпуска продукции fi (xi ), млн.руб.
Предприятие 1 Предприятие 2 Предприятие 3
0 0 0 0
100 а 50 40
200 50 80 d
300 b 90 110
400 110 150 120
500 170 с 180
600 180 210 220
700 210 220 240

Таблица 6

Варианты исходных данных

Вариант a b c d
1 30 90 190 50
2 20 80 160 70
3 35 100 190 60
4 40 110 180 90
5 30 100 190 60

Окончание табл. 6

Вариант a b c d
6 35 80 160 70
7 40 80 160 70
8 40 100 190 60
9 30 110 160 90
10 40 110 190 90
11 20 100 190 60
12 20 80 180 60
13 35 110 190 50
14 40 90 160 50
15 30 90 190 90
16 35 90 160 70
17 40 90 190 50
18 20 90 150 90
19 20 80 190 60
20 20 110 160 70
21 40 90 190 60
22 30 110 190 55
23 35 90 180 70
24 45 85 170 90
25 40 85 170 50

В задаче необходимо:

1. Составить рекуррентное соотношение Беллмана в виде функциональных уравнений.

2. Используя рекуррентные соотношения и исходные данные определить сначала условно оптимальные, а затем оптимальные распределения капиталовложений между предприятиями.

Методические указания к решению задачи 2

Принцип оптимальности. Каково бы ни было состояние системы перед очередным шагом, надо выбрать управление на этом шаге так, чтобы выйгрыш на данном шаге плюс оптимальный выйгрыш на всех последующих шагах был максимальным.

Общая последовательность решения задач динамического программирования следующая.

1. Выбрать способ описания процесса, т.е. параметры, характеризующие состояние системы, фазовое пространство и способ членения операции на шаги.

2. Записать выигрыш wi на iтом шаге в зависимости от состояния системы S вначале этого шага и управления Ui :

wi = wi (S, Ui )

3. Записать для iтого шага функцию выражающую изменение состояния системы от S к S’под влиянием управления Ui :

S’=j(S, Ui ).

4. Записать основное функциональное уравнение, выражающее функцию Wi (S) через Wi+1 (S):

Wi (S)=maxU i {wi (S, Ui )+Wi+1 (ji (S, Ui ))}

5. Найти функцию Wm (S)=maxU m {wm (S, Um )} – условный оптимальный выйгрыш для последнего шага (максимум берется только по тем направлениям, которые приводят систему в заданную область конечных состояний S*w ) и соответствующее ей условное оптимальное управление на последнем шаге Um (S).

6. Зная Wm (S) и пользуясь уравнением из п.4, при конкретном виде функций wi (S, Ui ), ji (S, Ui ), найти одну за другой функции:

Wm1 (S), Wm2 (S), … , W1 (S)

и соответствующие им условные оптимальные управления:

Um1 (S), Um2 (S), … , U1 (S).

7. Если начальное состояние системы S0 задано, то найти оптимаьный выйгрыш Wmax (S0 ), и далее безусловные оптимальные управления (и, при необходимости, конечное состояние системы) по цепочке:

S0 ®U1 (S0 )®S*1 ® U2 (S*1 )®S*2 ® U3 (S*2 )®…®S*m1 ® Um (S*m1 )®S*m .

8. Если начальное состояние S0 не задано, а ограничено условием S0 ÎS0 , тонайти оптимальное начальное состояние, при котором выйгрыш достигнет максимума и далее по цепочке, безусловные оптимальные управления.

В данной задаче вместо того, чтобы рассматривать допустимые варианты распределения капиталовложений между n предприятиями и оценивать их эффективность, необходимо исследовать эффективность вложения средств на одном предприятии, на двух предприятиях и т.д., наконец, на n предприятиях. Таким образом получим n этапов, на каждом из которых состояние системы (3 предприятия) описывается объемом средств, подлежащих освоению k предприятиями (k=1¸n). Управлениями будут являться решения об объемах капиталовложений, выделяемых kтому предприятию.

Литература к задаче 2

1. Вентцель

Учебная работа № 1716. Практикум по предмету Математические методы и модели