Учебная работа № 1828. Три знаменитые классические задачи древности
Министерство Образования РБ.
Средняя общеобразовательная школа №42
«Три знаменитые классические
задачи древности»
Выполнил: ученик 9 класса «Д» Иванов Иван
Проверил: Леонова Вера Михайловна
г. Улан – Удэ
2005 г.
Искусство построения геометрических фигур при помощи циркуля и линейки было в высокой степени развито в Древней Греции. Однако древним геометрам никак не удавалось выполнить некоторые построения, используя лишь циркуль и линейку, а построения, выполненные с помощью других инструментов, не считались геометрическими. К числу таких задач относятся так называемые три знаменитые классические задачи древности:
о квадратуре круга о трисекции угла
о удвоении S круга.
Задача о квадратуре круга
Одной из древнейших и самых популярных математических задач, занимавшей умы людей на протяжении 3 – 4 тысячелетий, является задача о квадратуре круга , т.е. о построении с помощью циркуля и линейки квадрата, равновеликому данному кругу. Если обозначить радиус круга через r , то речь будет идти о построении квадрата, площадь которого равна r 2 , а сторона равна r
Шенкс вычислял. Следовательно, он стоял в противоречии с требованиями задачи о квадратуре круга, где требовалось найти решение построением. Работа, сделанная Шенксом, в сущности бесполезна – или почти бесполезна. Но, с другой стороны, она может служить довольно убедительным доказательством противного тому, кто, убедившись доказательствами Линдеманна и др. или не зная о них, до сих пор ещё надеется, что можно найти точное отношение длины окружности к диаметру. Можно вычислить приближенное значение
Следы задачи о квадратуре круга можно усмотреть ещё в древнеегипетских и вавилонских памятниках II тысячелетия до н.э. Однако непосредственная постановка задачи о квадратуре круга встречается впервые в греческих сочинениях V в. до н.э. В своём произведении « О изгнании » Плутарх рассказывает, что философ и астроном Анаксагор (500 – 428 г. до н.э.) находясь в тюрьме, отгонял печаль размышлениями над задачей о квадратуре круга. В комедии « Птицы » (414 г. до н.э.) знаменитый греческий поэт Аристофан, шутя на тему о квадратуре круга, вкладывает в уста Астронома Метона следующие слова:
Возьму линейку, проведу прямую,
И мигом круг квадратом обернётся,
Посередине рынок мы устроим,
А от него уж улицы пойдут –
Ну, как на Солнце! Хоть оно само
И круглое, а ведь лучи прямые!..
Эти стихи говорят о том, что задача уже была к тому времени очень популярна в Греции. Один из современников Сократа – софист Антифон считал, что квадратуру круга можно осуществить следующим образом: впишем в круг квадрат и, разделяя пополам дуги, соответствующие его сторонам, построим правильный вписанный восьмиугольник, затем шестнадцати угольник и т.д., пока не получим многоугольник, который в силу малости сторон сольётся с окружностью. Но так как можно построить квадрат равновеликий любому многоугольнику, то и круг можно квадрировать. Однако уже Аристотель доказал, что это будет только приближённое, но не точное решение задачи, так как многоугольник никогда не может совпасть с кругом.
Фигурымениски ALBM и ADCE, ограниченными круговыми дугами, и называются луночками.
По теореме Пифагора:
Отношение
Различные другие, продолжавшиеся в течение тысячелетий попытки найти квадратуру круга оканчивались неудачей. Лишь в 80х годах 19в. было строго доказано, что квадратура круга с помощью циркуля и линейки невозможна. Задача о квадратуре круга становится разрешимой, если применять, кроме циркуля и линейки, еще другие средства построения. Так, еще в 4в. до н.э. греческие математики Динострат и Менехм пользовались для решения задачи одной кривой, которая была найдена еще в 5в. до н.э. Гиппием Элидским. Однако ученых Древней Греции и их последователей такие решения, находящиеся за пределами применения циркуля и линейки, не удовлетворяли. Будучи вначале чисто геометрической задачей, квадратура круга превратилась в течение веков в исключительно важную задачу арифметикоалгебраического характера, связанную с числом
Квадратура круга была в прежние времена самой заманчивой и соблазнительной задачей. Армия «квадратурщиков» неустанно пополнялась каждым новым поколением математиков. Все усиль были тщетны, но число их не уменьшалось. В некоторых умах доказательство, что решение не может быть найдено, зажигало ещё большее рвение к изысканиям. Что эта задача до сих пор не потеряла своего интереса, лучшим доказательством служит появление до сих попыток её решить.
Задача о трисекции угла
Знаменитой была в древности и задача о трисекции угла ( от латинских слов tria– три и section – рассечение , разрезание), т.е.о разделении угла на три равные части с помощью циркуля и линейки. Говорят, что такое ограничение вспомогательных приборов знаменитым греческим философом Платоном.
равен 60о , то
угла САВ , получаем искомое деление прямого угла MAN
на три равных угла:
Задача о трисекции угла оказывается разрешимой и при некоторых других частных значениях угла (например, для углов в
Рис. 3, а, б, в: конхоида Никомеда
Задача о трисекции угла становится разрешимой и общем случае, если не ограничиваться в геометрических построениях одними только классическими инструментами, циркулем и линейкой. Попытки решения задачи с помощью инструментов и средств были предприняты еще в V в. до н.э. Так, например, Гиппий Элидский, знаменитый софист, живший около 420 г. до н.э., пользовался для трисекции угла квадратрисой. Александрийский математик Никомед ( II в. до н.э.) решил задачу о трисекции угла с помощью одной кривой, названной конхоидой Никомеда (рис. 3), и дал описание прибора для черчения этой кривой.
Рис. 4 Рис. 5
Интересное решение задачи о трисекции угла дал Архимед в своей книге «Леммы», в которой доказывается , что если продолжить хорду
значит,
Отсюда следует так называемый способ «вставки» для деления на три равные части угла AOE . Описав окружность с центром O и радиусом
Вот ещё одно решение задачи о три секции угла при помощи линейки с двумя насечками предложенное Кемпе:
Построение
На одной из сторон угла откладываем от вершины B прямую BA = PQ . Делим ВА пополам в точке М ; проводим линии
Возьмём теперь нашу линейку и приспособим её к уже полученной фигуре так, чтобы точка Р
линейки лежала на прямой КМ , точка Q лежала бы
на прямой LM , и в тоже время продолжение PQ линейки проходило бы через вершину данного угла В . тогда прямая ВР и есть искомая, отсекающая третью часть угла В .
Доказательство
Внешний же
Вместе с тем
Значит,
Итак:
(Ч.Т.Д.).
Приведённое выше решение задачи принадлежит Кемпле, который при этом поднял вопрос, почему Евклид не воспользовался делением линейки и процессом её приспособления для доказательства 4й теоремы своей первой книги, где вместо этого он накладывает стороны одного треугольника на стороны другого. На это может ответить только, что в задачу Евклида и не входило отыскивание некоторой точки по средствам измерения и процесса приспособления линейки. В своих рассуждениях и доказательствах он просто накладывает фигуру на фигуру – и только.
Задача об удвоении куба
Удвоение куба – так называется третья классическая задача древнегреческой математики. Эта задача на ряду с двумя первыми сыграла большую роль в развитии математических методов.
Задача состоит в построении куба, имеющий объём, вдвое больше объёма данного куба. Если обозначить через а ребро данного куба, то длина ребра х искомого куба должно удовлетворять уравнению
x 3 = 2a3 , илиx =
Задача является естественным обобщением аналогичной задачей об удвоении квадрата, которая решается просто: стороной квадрата, площадь которого равна 2а 2 , служит отрезок длиной а
Задача об удвоении куба носит так же название «делосской задачи» в связи со следующей легендой.
На острове Делос (в Эгейском море) распространялась эпидемия чумы. Когда жители острова обратились к оракулу за советом, как избавится от чумы, они получили ответ: «Удвойте жертвенник храма Аполлона». Сначала они считали, что задача легка. Так как жертвенник имел форму куба, они построили новый жертвенник, ребро которого было в два раза больше ребра старого жертвенника. Делосцы не знали, что таким образом они увеличили объём куба не в 2 раза, а в 8 раз. Чума ещё больше усилилась, и в ответ на вторичное обращение к оракулу последний посоветовал: «Получше изучайте геометрию…» Согласно другой легенде, бог приписал удвоение жертвенникам не потому, что ему нужен вдвое больший жертвенник, а потому, что хотел упрекнуть греков, «которые не думают о математике и не дорожат геометрией».
Задачей удвоения куба еще в V в. до н.э. занимался Гиппократ Хиосский, который впервые свел ее к решению следующей задачи: построить «два средних пропорциональных» отрезка х , у между данными отрезками а, b , т.е. найти х и у , которые удовлетворяли в следующей непрерывной пропорции:
а : х = х : у = у : b (1)
Суть одного механического решения задач об удвоении куба, относящегося к IVв. до н.э. , основано на методе двух средних пропорциональных. Отложим на стороне прямого угла отрезок
Имеем:
или
а : х = х : у = у : 2а.
Отсюда
или
т.е.
Это значит что отрезок
Архит Тарентский дал интересное стереометрическое решение «делосской задачи». После него, кроме Евдокса, дали свои решения Эратосфен, Никомед, Аполлоний, Герон, Папп и др.
Итак, все старания решить три знаменитые задачи при известных ограничивающих условиях (циркуль и линейка) привели только к доказательству, что подобное решение невозможно. Иной, пожалуй, по этому поводу скажет, что, следовательно, работа сотен умов, пытавшихся в течении столетий решить задачу, свелась ни к чему… Но это будет неверно. При попытках решить эти задачи было сделано огромное число открытий, имеющих гораздо больший интерес и значение, чем сами поставленные задачи. Попытка Колумба открыть новый путь в Индию, плывя всё на запад, окончилась, как известно, неудачей. И теперь мы знаем, что так необходимо и должно было случиться. Но гениальная попытка великого человека привела к «попутному» открытию целой новой части света, перед богатством и умственным развитием которого бледнеют ныне все сокровища Индии.
Древность завещала решение всех трёх задач нашим временам.