Учебная работа № 1459. Алгоритмы декомпозиции и перебора Lклассов для решения некоторых задач размещения

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (6 оценок, среднее: 4,67 из 5)
Загрузка...

Учебная работа № 1459. Алгоритмы декомпозиции и перебора Lклассов для решения некоторых задач размещения

А.А. Колоколов, Т.В. Леванова, Институт информационных технологий и прикладной математики СО РАН

1.

В [1] описаны алгоритмы для решения частично целочисленных задач производственнотранспортного типа, основанные на идее декомпозиции Бендерса и метода направленного перебора. В данной работе предлагаются декомпозиционные алгоритмы для простейшей задачи размещения (ПЗР), задачи о pмедиане [2, 8] и некоторых других постановок, в которых наряду с отсечениями Бендерса для решения целочисленной подзадачи используется лексикографический перебор Lклассов [?]. Краткое сообщение о них имеется в [7].

Рассмотрим ПЗР в следующей постановке. Дано конечное множество пунктов возможного размещения предприятий и список клиентов. Предприятия производят однородный продукт в неограниченном количестве. Известны стоимости размещения предприятий в указанных пунктах и затраты на удовлетворение спроса каждого клиента. Требуется разместить предприятия и прикрепить к ним клиентов так, чтобы суммарные производственнотранспортные затраты были минимальны. Введем некоторые обозначения:

m число пунктов возможного размещения предприятий, i номер предприятия,

n число клиентов, j номер клиента,

ci стоимость размещения предприятия в пункте i;

tij затраты на удовлетворение спроса клиента j предприятием i (включающие издержки на производство и транспортировку);

xij часть всей продукции, которую необходимо доставить с предприятия i клиенту j;

Обозначим .

Мы используем следующую модель ПЗР:

(1)
(2)
(3)
(4)

2. Алгоритм перебора L классов

В [?] и других работах развивается подход к анализу и решению задач целочисленного программирования, основанный на регулярных разбиениях пространства Rn. Много результатов было получено с помощью Lразбиения.

Дадим определение Lразбиения. Пусть , символы лексикографического порядка. Точки являются Lэквивалентными, если не существует , такой что . Это отношение разбивает любое множество на классы эквивалентности, которые называются Lклассами. Lразбиение обладает рядом важных свойств.

1) Каждая точка образует отдельный L класс. Остальные классы состоят только из нецелочисленных точек и называются дробными.

2) Если X ограниченное множество, то фактормножество X/L конечно.

3) L разбиение согласовано с лексикографическим порядком, то есть для любого X все элементы X/L могут быть линейно упорядочены следующим образом: для всех .

Если X ограничено, то X/L можно представить в виде

Рангом L класса V называется число , если V дробный L класс и r(V) = n+1 для любой целой точки.

Алгоритм перебора L классов основан на идее поиска элемента L разбиения, непосредственно следующего за данным L классом в порядке лексикографического возрастания (для задачи на минимум).

Пусть . Рассмотрим этот метод более подробно для многогранника . Задача булева программирования (БП) имеет вид:

(5)

Соответствующая задача линейного программирования (ЛП) состоит в нахождении лексикографически минимального элемента множества M.

Пусть и известен некоторый представитель . Сначала мы ищем соседний к V дробный элемент V’ такой, что где r ранг класса V, и x некоторая точка из V’. Если V’ будет найден, продолжаем процесс для V’ вместо V.

В противном случае мы ищем V’ такой, что , ранг V’, . Если V’ не может быть найден, мы уменьшаем (если это возможно) r’ на 1 и продолжаем просмотр. Если V’ будет найден, мы возвращаемся к началу процедуры и V’ становится исходным L классом.

Если не существует соседнего дробного Lкласса, то либо мы получаем оптимум задачи БП, либо приходим к выводу, что задача не имеет решения. Процесс является конечным, так как M ограничено.

Опишем алгоритм перебора L классов. Для простоты номер итерации будем опускать.

Шаг 0. Решаем исходную задачу ЛП. Если она не имеет решения или ее решение целочисленное, процесс завершается. В противном случае идем на шаг 1.

Шаг 1. Обозначим через оптимальное решение задачи ЛП, которая рассматривалась на предыдущем шаге. Находим

Формируем задачу ЛП путем добавления к исходной ограничений

Ее целевая функция . Находим решение x’ этой задачи. Возможны случаи:

1) , процесс завершается;

2) , тогда, если

a) x’p < 1; если p=1, процесс завершается, в противном случае идем на шаг 2;

b) x’p = 1; идем на шаг 1.

Шаг 2. Находим максимальный номер , такой, что . Формируем задачу ЛП, добавляя к исходной следующие ограничения:

ее целевая функция . Находим решение x’ этой задачи. Возможны варианты:

1) , процесс завершается;

2) , тогда возможны случаи:

a) ; если , процесс завершается, иначе и переходим на шаг 1.

В результате работы алгоритма перебора Lклассов мы получаем лексикографически монотонную последовательность представителей Lклассов множества M/L.

3. Декомпозиционный алгоритм

После фиксирования всех переменных zi мы получаем из (1)(4) транспортную задачу T(z) и соответствующую ей двойственную задачу D(z) с переменными , которая имеет вид

(6)
(7)
(8)

Оптимальное решение этой задачи используется для построения отсечения Бендерса.

Опишем основные шаги декомпозиционного алгоритма.

Предварительный шаг. Формулируем исходную задачу целочисленного программирования P(1): найти лексикографически минимальное решение системы, состоящей из неравенства

и нескольких ограничений вида

(9)

Обозначим z(k), x(k) , v(k), u(k) оптимальные решения задач P(k), T(z(k)), D(z(k)) соответственно, и z(0), x(0) лучшее из известных решений задачи (1)(4) со значением целевой функции F(0).

Итерация k,

Шаг 1. Решаем задачу P(k) с помощью алгоритма перебора L классов. Если мы не можем получить допустимого решения, то F(k1) оптимальное значение целевой функции, z(k1) и x(k1) оптимальное решение исходной задачи. Процесс решения заканчивается.

Иначе переходим на шаг 2.

Шаг 2. Формулируем и решаем транспортную задачу T(z(k)). Эта задача имеет оптимальное решение x(k), более того, можно получить все (см. [8]). Мы находим также значения двойственных переменных u(k), v(k). Вычисляем . Если

F(z(k), x(k)) < F(k1), тогда F(k1) заменяем на F(k) в системе отсечений задачи P(k).

Переходим на шаг 3.

Шаг 3. Строим следующее ограничение (отсечение Бендерса):

(10)

Переходим на шаг 4.

Шаг 4. Формулируем задачу P(k+1): найти z, которое является лексикографически минимальным целочисленным решением системы неравенств задачи P(k) и (10).

Переходим к следующей итерации (на шаг 1).

Мы можем построить систему (9), например, используя приближенные комбинаторные алгоритмы и отсечения Бендерса. На шаге 1 алгоритма можно использовать Lрегулярные отсечения. Вычислительный эксперимент показал эффективность применения таких гибридных вариантов алгоритма перебора Lклассов [3]. Нами разработаны и другие варианты перебора Lклассов.

Описанный алгоритм является конечным и дает оптимальное решение простейшей задачи размещения. На каждой итерации мы рассматриваем систему типа (9). Число дополнительных ограничений монотонно растет. Мощность системы ограничений можно ограничить и применить процедуру отбрасывания отсечений. Нами предложен также ряд приближенных алгоритмов.

Схема алгоритма в основном остается такой же для задачи о pмедиане и других постановок задач размещения. Специфика задач учитывается в процедурах решения производственной и транспортной задач.

Нами был реализован вариант описанного алгоритма, проведены экспериментальные исследования на IBM PC/AT486 для простейшей задачи размещения и задачи о pмедиане. В результате расчетов получены следующие данные:

число Lклассов, просматриваемых на каждой итерации, и их общее число;

количество использованных отсечений и время счета;

доля Lклассов, анализируемых после нахождения оптимального решения;

о поведении алгоритма на примерах с различным соотношением производственных и транспортных затрат и другие характеристики.

Список литературы

Бахтин А.Е., Колоколов А.А., Коробкова З.В. Дискретные задачи производственнотранспортного типа. Новосибирск: Наука, 1978.167с.

Береснев В.Л., Гимади Э.Х., Дементьев В.Т. Экстремальные задачи стандартизации. Новосибирск: Наука, 1978. 335 с.

Заикина Г.М., Колоколов А.А., Леванова Т.В. Экспериментальное сравнение некоторых методов целочисленного программирования // Методы решения и анализа задач дискретной оптимизации. Омск: ОмГУ, 1992. С. 2541.

Колоколов А.А. Применение регулярных разбиений в целочисленном программировании // Известия вузов. Математика. 1993. N.12. С. 1130.

Колоколов А.А. Регулярные разбиения в целочисленном программировании //Методы решения и анализа задач дискретной оптимизации. Омск: ОмГУ, 1992. С. 67 93.

Kolokolov A.A. On the Lstructure of the integer linear programming problems. //Proceedings of the 16th IFIPTC7 Conference on System Modelling and Optimization. Compiegne. France, 1993. P. 756760.

Kolokolov A.A., Levanova T.V. Some Lclass Enumeration Algorithms for Simple Plant Location Problem // Abstracts of International Conference on Operations Research. Berlin, 1994. P.75.

Krarup J., Pruzan P.M. The simple plant location problem: survey and synthesis // Europ. J. of Oper. Res., 1983. N.12. P. 3681.

Учебная работа № 1459. Алгоритмы декомпозиции и перебора Lклассов для решения некоторых задач размещения