Учебная работа № 1401. Эволюция центральных областей галактик

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (6 оценок, среднее: 4,67 из 5)
Загрузка...
Контрольные рефераты

Учебная работа № 1401. Эволюция центральных областей галактик

О.К. Сильченко, доктор физикоматематических наук, ГАИШ, МГУ им. М.В. Ломоносова

Представления о путях образования и эволюции галактик кардинально изменились за последние 20 лет. До этого считали, что на заре формирования звезд во Вселенной подавляющее большинство галактик приобрело достаточно «законченный» вид, а потом начало «эволюционировать». При этом под эволюцией подразумевалось рождение звезд и их старение, но никак не заметные изменения формы галактик. Исключение составляют сильно взаимодействующие соседние объекты, в которых могут разрушаться звездные диски и появляться новые структуры (приливные хвосты, мосты и рукава). Но сильно взаимодействующих галактик рядом с нами немного. А «нормальные» галактики, как правило, производят впечатление динамически устойчивых объектов, мало изменившихся за последние 10 млрд. лет. Грубо говоря, галактике суждено быть спиральной, если она таковой родилась в силу определенных начальных условий, и задача ученых – понять, с какими физическими параметрами связана её «судьба». И хотя до сих пор разделяют понятия «образование галактик» и «эволюция галактик», в последние годы грань между ними постепенно стирается. Скорее всего, галактики «образуются», то есть формируются и меняют структуру на протяжении всей своей жизни. Почему же так сильно изменилась парадигма?

Иерархическая концепция

Похоже, виноваты теоретикикосмологи. Пока астрономы не спеша наблюдали и изучали видимое население Вселенной – галактики, – космологи пришли, в основном из теоретических соображений, к выводу, что всю гравитацию и, следовательно, динамическую эволюцию Вселенной определяет небарионная холодная темная материя. Раз она холодная и бесстолкновительная, у нее только один путь эволюции – «кучковаться» под действием гравитационной неустойчивости, то есть распадаться на маленькие сгустки, которые потом сливаются в большие, затем в очень большие и так далее. А барионная фракция (газ, в основном водород), масса которой всего 10%, обязана следовать за темной материей и тоже фрагментировать и сливаться, сливаться, сливаться… Звезды образуются «попутно», в процессе слияний структур. Таким образом, из недр космологических умозаключений вышла иерархическая концепция формирования галактик.

Ранние работы космологов по формированию морфологической последовательности типов галактик, появившиеся лет 10 назад, в достаточно категоричной форме утверждали: первыми родились маленькие дисковые (спиральные) галактики, а гигантские эллиптические, по иерархии – последние в цепочке, образовались не более 5 млрд. лет назад, и все как одна – слиянием (большим мержингом) спиральных галактик. Ограничения по массе галактик, установленные еще в рамках стандартной космологической модели выглядели весьма жестко: до красных смещений z = 3 (в первый миллиард лет жизни Вселенной) могли образовываться галактики массой не более 108 М¤, до z = 1 (в первые 6 млрд.. лет жизни Вселенной) не более 1010 М¤, все, что массивнее, образовалось после z = 1. С тех пор спохватившиеся наблюдатели с помощью новых гигантских телескопов – 8 м VLT и SUBARU (Земля и Вселенная, 2004, № 2) – нашли довольно много массивных галактик, с массой звездного вещества больше 1011 М¤ (при z > 1.5). Оказалось, что население гигантских эллиптических галактик, как в скоплениях, так и в разреженных окрестностях, уже было полностью на месте ~ 8 млрд. лет назад (z = 1), и космологи стали менее категоричны. Однако сама иерархическая концепция формирования галактик продолжает господствовать.

Центральным элементом иерархической концепции является слияние. Различают, вопервых, бездиссипативный мержинг – слияние галактик, состоящих только из звезд, происходит без уменьшения общей энергии системы. Вовторых, диссипативный мержинг, происходит в присутствии газа, который высвобождает энергию. При этом в областях с газом возникают ударные волны и вспышки звездообразования. Хотя слияние двух тонких звездных дисков всегда приводит к их разрушению, однако степень этого разрушения зависит от соотношения масс сливающихся объектов. Тут тоже есть своя классификация. При большом (major) мержинге массы сливающихся объектов близки, а при малом (minor) мержинге сильно различаются (не менее чем 1:5).

Отметим еще один важный момент: между слияниями, особенно в поздние эпохи, проходит иногда до нескольких миллиардов лет. Все это время галактика не дремлет, а продолжает эволюционировать под действием неустойчивостей, как порождаемых извне, гравитационным взаимодействием с соседями, так и внутренних, присущих даже совершенно изолированным галактикам. Эта «спокойная» эволюция получила название секулярной; хотя она и спокойная, но тоже может приводить к весьма существенным изменениям структуры.

Рассмотрим подробно основные механизмы структурной эволюции галактик: внутренние – гравитационные неустойчивости тонких холодных дисков, как звездных, так и газовых; внешние – приливные взаимодействия (по своей природе тоже гравитационные), большие и малые слияния.

Эволюция изолированного диска

Тонкий, звездный галактический диск без газа неустойчив относительно неосесимметричных возмущений. Это означает, что через несколько оборотов вращения, за характерное время порядка миллиарда лет, в изначально осесимметричном диске появится бар – звездное уплотнение, вытянутое вдоль радиуса. Дальнейшая эволюция этого уплотнения будет происходить уже в направлении, перпендикулярном плоскости диска: звезды бара, продолжая вращение в диске, будут, кроме того, раскачиваться вверхвниз, и вскоре толщина центральной области диска значительно увеличится по сравнению с толщиной во внешних областях. Так, в процессе секулярной эволюции даже «чисто» звездного диска, галактика может «нарастить» балдж (центральная сфероидальная структура в галактике) и передвинуться по морфологической классификации из совсем поздних типов в более ранние. А если кроме звезд в диске есть еще и газ? Тогда картина эволюции меняется радикальным образом. Газ, составляющий обычно не более десятка процентов от суммарной массы звезд, подчиняется гравитационному воздействию звезд и тоже концентрируется к бару. Но поскольку, в отличие от звезд, газ диссипативен, его облака могут неупруго сталкиваться. В баре газовые облака прерывают свое регулярное вращение по замкнутым галактоцентрическим орбитам, в ударных волнах теряют энергию, отдают свой момент вращения звездам и устремляются прямо к центру галактики. Численное моделирование показывает, что за характерное время порядка миллиарда лет б?льшая часть газа динамически эволюционирующего изолированного галактического диска скапливается в его центре, в пределах радиуса около 1 кпк. Но поскольку при этом возникают большие плотности, в данной области должно начаться звездообразование.

Рис. 1 – Эволюция изолированного звездного диска: а) изолированный тонкий звездный диск с изначально осесимметричным распределением плотности звезд (вид сверху). Ось симметрии проходит через центр перпендикулярно плоскости рисунка; б) диск с баром, развившимся через время, равное нескольким периодам вращения галактики: осевая симметрия распределения плотности звезд нарушена. Рисунки по модельным расчетам А.В. Хоперского.

Так выглядит секулярная эволюция изолированного диска в численных моделях, рассчитанных современными астрономами Д. Фридли и В. Бенцем (1993, 1995). В этих же моделях отмечается еще одна любопытная особенность: центра галактики газ может достигнуть, только если он изначально вращался так же, как и звезды. А если газ вращается в другую сторону, то в процессе стекания к центру галактики, он выходит из плоскости диска и образует устойчивое наклонное кольцо. Оно может долго вращаться, не падая на центр, и тогда вспышки звездообразования не будет.

Эволюция изолированного диска

Что происходит со структурой дисковых галактик, если они близко встречаются с другими галактиками, продемонстрировали американские ученые А.Тумре и Ю.Тумре еще в 1972 г. Даже самый грубый численный эксперимент хорошо воспроизводит внешние приливные структуры – «мосты», «хвосты» и протяженные спиральные рукава, «вытягиваемые» гравитацией возмущающего объекта из диска галактики, вовлеченной во взаимодействие. Позже, когда численные эксперименты стали более рафинированными (детальными), как, например, у японского астронома М. Ногучи в 1987 г., выяснилось, что внешнее гравитационное воздействие преобразует не только внешние части галактик: во внутренних областях диска возникает бар. А дальше – все по сценарию, описанному выше для изолированных дисков. В конце концов весь газ упадет в центр, и возможна мощная вспышка звездообразования.

Большие слияния

Численные эксперименты, описывающие слияния двух дисковых галактик, с энтузиазмом проводились последние 10 лет, поскольку такие явления – чуть ли не центральный эпизод иерархической картины эволюции галактик. Если предоставить газовому протогалактическому облаку эволюционировать в одиночестве, из него может образоваться только дисковая галактика: некуда девать лишний момент вращения газа. Это было одной из самых серьезных проблем для классических теорий формирования галактик путем «монолитного коллапса», которые развивались в 70е гг. И чтобы «образовать» практически не вращающуюся сфероидальную эллиптическую галактику, придумали единственный возможный путь – слияние двух изначально некопланарных (плоскости не совпадают) звездных дисков. Тогда в численных экспериментах действительно получается сфероидальное звездное тело с профилем поверхностной яркости, который наблюдается в реальных эллиптических галактиках. Но куда денется газ, который изначально должен быть в дисковых галактиках, «решивших» слиться? Вы, наверно, уже догадались. При столкновении дисков он теряет энергию в ударных волнах, отдает момент звездам и падает в центр вновь сформировавшейся эллиптической галактики, где его ожидает вспышка звездообразования.

Малые слияния

При малых слияниях на большую дисковую галактику падает маленькая галактика – спутник с массой, например, 10% от массы «хозяйской» галактики. Расчеты показывают, что при падении, даже под углом к плоскости основного диска, спутник, после нескольких ударов о него, теряет вертикальную составляющую момента, оседает в плоскость большого диска и начинает «спиралить» к центру. В течение примерно 1 млрд. лет он достигает центра хозяйской галактики, потеряв в пути меньшую часть своего собственного вещества. А что же галактикаспутник приносит в центр? Большую часть своих звезд и газ, если изначально он у него был. Если же изначально у него газа не было, все равно во время движения он сильно возмутил газовый диск хозяйской галактики, усилилась турбулентность, и, следовательно, увеличилась вязкость в глобальном газовом диске. Возрастание вязкости означает интенсивное перераспределение момента вращения и снова стремительные радиальные течения газа к центру. Малые слияния тоже должны приводить к концентрации газа в ядре галактики и к последующей вспышке звездообразования.

Вы уже заметили? Все важные события в жизни галактик кончаются одним и тем же: механизмы секулярной эволюции приводят к концентрации газа в центре галактики и, как следствие, к вероятной вспышке звездообразования там. Причем газ, изза своей вязкой природы, как правило, представляет собой подсистему с малыми (относительно скорости упорядоченного вращения) хаотическими скоростями облаков и геометрией тонкого диска. Образовавшиеся вновь в центре галактики звезды, скорее всего, также распределятся компактным околоядерным звездным диском. И если мы хотим найти в близких к нам галактиках последствия их секулярной эволюции, разумнее всего поискать в центрах галактик компактные звездные диски, отличающиеся от окружения (балджа, например) более молодым возрастом и большим содержанием металлов, поскольку образовались они позже из хорошо проэволюционировавшего вещества. Там, кроме всего прочего, еще и самое яркое место в галактике, поэтому легче наблюдать. Первые впечатляющие открытия околоядерных звездных дисков были сделаны в эллиптических галактиках, там, где их найти никто не ожидал.

Диски в эллиптических галактиках

Эллиптические галактики, в отличие от спиральных, всегда считались однокомпонентными звездными системами. Все звезды эллиптической галактики вроде бы похожи друг на друга, имеют одинаковый возраст, одинаковую металличность и распределены в трехмерной сфероидальной структуре, которая в проекции на плоскость неба может иметь отношение видимых осей от 1 : 1 до 1 : 3. Вращается большинство эллиптических галактик медленно (по сравнению с дисковыми галактиками), они являются динамически горячими системами, то есть у их звезд хаотические движения («дисперсия скоростей») преобладают над регулярным вращением. Однако, когда с появлением чувствительных ПЗСприемников точность измерений потоков повысилась до 1% (и лучше!), а динамический диапазон позволил наблюдать самые центральные области галактик, обнаружились любопытные вещи.

Рис. 2 – Линии равной поверхностной яркости (изофоты), построенные для изображения эллиптической галактики NGC 821, полученного КТХ. Видны избытки «носики» на изофотах вблизи их большой оси.

В 1988 г. сделаны два громких открытия: вопервых, в некоторых эллипти

Учебная работа № 1401. Эволюция центральных областей галактик