Учебная работа № 1047. Математика в химии и экономике

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (3 оценок, среднее: 4,67 из 5)
Загрузка...

Учебная работа № 1047. Математика в химии и экономике

Реферат по математике ученицы 8 г класса Низовой Юлии

Муниципальное образовательное учреждение – гимназия № 47

г. Екатеринбург, 2000

В школьном курсе математики довольно мало внимания уделяется задачам на смеси, концентрации растворов и производительности труда. Однако в последние годы на вступительные экзамены в ВУЗы такие задачи даются абитуриентам достаточно часто и вызывают у них затруднения.

Цель настоящего реферата – изучение методов решения таких задач, решение нескольких задач на изменение концентраций и на начисление простых и сложных процентов.

Кроме того, поскольку в настоящее время научная работа немыслима без компьютера я поставила себе дополнительную задачу освоить текстовый редакторWord, который используется наиболее широко.

Задачи на концентрации

Рассматривая задачи на составление уравнений, остановимся, прежде всего, на задачах, решение которых связано с использованием понятий “концентрация” и “процентное содержание”. Обычно в условиях таких задач речь идет о составлении сплавов, растворов или смесей двух или нескольких веществ.

Основные допущения, которые принимаются в задачах подобного рода, состоят в следующем:

а) все получающиеся сплавы или смеси однородны;

б) при слиянии двух растворов, имеющих объемы V1 и V2 , получается смесь, объем которой равен V1 +V2 , т.е. V0 =V1 +V2 .

Заметим, что такое допущение не представляет собой закон физики и не всегда выполняется в действительности. На самом деле при слиянии двух растворов не объем, а масса или вес смеси равняется сумме масс или весов составляющих ее компонент.

Задачи на смешивание при кажущейся простоте не являются очевидными. Так, в учебнике алгебры авторов Ш.А.Алимова, Ю.М.Колягина и др. в задаче

№ 491 допущена ошибка, которая не исправлена даже в 6 издании. Текст задачи гласит: “Два раствора, из которых первый содержит 0,8 кг, а второй 0,6 кг безводной серной кислоты, соединили вместе и получили 10 кг нового раствора серной кислоты. Найти массу первого и второго растворов в смеси, если известно, что !!!безводной серной кислоты в первом растворе было на 10% больше, чем во втором.” Если считать условие, выделенное курсивом верным, то

0,2 кг (0,80,6) безводной серной кислоты равно 10%, то есть, 100% ее равно 2 кг, а по условию задачи ее всего в обоих растворах 1,4 кг (0,8+0,6). Противоречие исчезает, если вместо знаков !!! вставить слово “концентрация”.

Рассмотрим для определенности смесь трех компонент А, В и С. Объем смеси V0 складывается из объемов чистых компонент:

V0 =VА +VВ +VС ,

а три отношения

cA =VА /V0 , cB =VB /V0 , cC =VC /V0

показывают, какую долю полного объема смеси составляют объемы отдельных компонент:

VА =cA V0 , VB =cB V0 , VC =cC V0 .

Отношение объема чистой компоненты (VА ) в растворе ко всему объему смеси (V0 ):

cA =VА /V0 =VА /(VА +VВ +VС ) (*)

называется объемной концентрацией этой компоненты.

Концентрации это безразмерные величины; сумма концентраций всех компонент, составляющих смесь, очевидно, равна единице:

cA +cB +cC =1.

Поэтому, для того чтобы структура раствора, состоящего из n компонент, была определена, достаточно знать концентрацию (n1)й компоненты. Если известны концентрации сA , сB исC компонент, составляющих данную смесь, то ее объем можно разделить на объемы отдельных компонент (рис. 1):

V0 =cA V0 +cB V0 +cC V0 . (формула 1)

Объемным процентным содержанием компоненты А называется величина

рА =cA 100% , (**)

т. е. концентрация этого вещества, выраженная в процентах.

Если известно процентное содержание: вещества А, то его концентрация находится по формуле

cAА /100% .

Так, например, если процентное содержание составляет 70%, то соответствующая концентрация равна 0,7. Процентному содержанию 10% соответствует концентрация 0,1 и т.д.

Таким же способом определяются и весовые (массовые) концентрация и процентное содержание, а именно как отношение веса (массы) чистого вещества А

в сплаве к весу (массе) всего сплава. О какой концентрации, объемной или весовой, идет речь в конкретной задаче, всегда ясно из ее условия.

Встречается сравнительно немного задач, в которых приходится пересчитывать объемную концентрацию на весовую или наоборот. Для того чтобы это сделать, необходимо знать удельные веса компонент, составляющих раствор или сплав. Рассмотрим для примера двухкомпонентную смесь с объемными концентрациями компонент с1 и с212 =1) и удельными весами компонент d1 и d2 . Вес смеси может быть найден по формуле

G=V1 d1 +V2 d2

в которой V1 и V2 объемы составляющих смесь компонент. Весовые концентрации компонент находятся из равенств

k1 =V1 d1 / (V1 d1 +V2 d2 )=c1 d1 /(c1 d1 +c2 d2 )=c1 d1 /(c1 (d1 d2 )+d2 ) ,

k2 =V2 d2 / (V1 d1 +V2 d2 )=c2 d2 /(c1 d1 +c2 d2 )=c2 d2 /(d1 +c2 (d2 d1 )) ,

которые определяют связь этих величин с объемными концентрациями.

Как правило, в условиях задач рассматриваемого типа встречается один и тот же повторяющийся элемент: из двух или нескольких смесей, содержащих компоненты A1 , А2 , А3 , …, An , составляется новая смесь путем перемешивания исходных смесей, взятых в определенной пропорции. При этом требуется найти, в каком отношении компоненты A1 , А2 , А3 , …, An войдут в получившуюся смесь.

Для решения этой задачи удобно ввести в рассмотрение объемное или весовое количество каждой смеси, а также концентрации составляющих их компонент A1 , А2 , А3 , …, An . С помощью концентраций нужно “расщепить” каждую смесь на отдельные компоненты, как это сделано в формуле (1), а затем указанным в условии задачи способом составить новую смесь. При этом легко подсчитать, какое количество каждой компоненты входит в получившуюся смесь, а также полное количество этой смеси. После этого определяются концентрации компонент A1 , А2 , …, An в новой смеси.

Проиллюстрируем сказанное выше на примере следующей задачи.

Задача1. Имеются два куска сплава меди и цинка с процентным содержанием меди р% и q% соответственно. В каком отношении нужно взять эти сплавы чтобы, переплавив взятые куски вместе, получить сплав, содержащий r% меди?

Решение. Составим иллюстративный рисунок к этой задаче (рис. 2). Концентрация меди в первом сплаве равна р/100, во втором сплаве q/100.

Если первого сплава взять х кг, а второго у кг, то с помощью концентраций (ясно, что речь идет о весовых концентрациях) можно “расщепить” эти количества на отдельные составляющие:

х=хр/100 (кг меди) +x(1p/100) (кг цинка)

и

y=yq/100 (кг меди) +y(1q/100) (кг цинка).

Количество меди в получившемся сплаве равно

хр/100+yq/100 (кг меди),

а масса этого сплава составит х+у кг. Поэтому новая концентрация меди в сплаве, согласно определению, равна

(хр/100+yq/100)/(х+у) .

По условию задачи эта концентрация должна равняться r/100:

(хр/100+yq/100)/(х+у)=r/100 ,

или

(хр+yq)/(х+у)=r .

Решим полученное уравнение. Прежде всего заметим, что уравнение содержит два неизвестных х и у. Нетрудно понять, что оба неизвестных однозначно не находятся. Концентрация получающегося сплава определяется не массой взятых кусков, а отношением этих масс. Поэтому в задаче и требуется определить не сами величины х и у, а только их отношение.

Отметим попутно, что выражение вида

F(x,y)=(ax+by)/(cx+dy) ,

называемое дробнолинейной функцией, часто встречается в задачах на составление уравнений. В числителе и знаменателе этой дроби стоят линейный однородные выражения, зависящие от х и у. Если не рассматривать случай у=0, то функция F(x,у) зависит фактически только от одной переменной, а именно от отношения x/y :

F(x,y)=(ax/y+b)/(cx/y+d)=j(x/y)

При этом уравнение F(x,y)=С позволяет найти это отношение.

Запишем уравнение задачи в следующем виде:

x(pr)=y(rq) .

Рассмотрим возможные случаи:

1) p=r=q .

В этом случае концентрации всех сплавов одинаковые и уравнение показывает, что имеется бесчисленное множество решений. Можно взять сколько угодно первого сплава и сколько угодно второго сплава.

2) p=r¹q .

В этом случае уравнение приобретает вид

х x 0=у(rq),

откуда находим: х любое, у=0. Физический смыслу этого решения понятен: если концентрация сплава, который требуется получить, совпадает с концентрацией первого сплава, но не равна концентрации второго сплава, то первого сплава можно взять сколько угодно, а второго сплава не брать вовсе.

3) p¹r=q .

Получаем уравнение

x(pr)=y x 0

откуда находим: у любое, х=0.

4) p¹r , p¹q , r¹q .

В этом случае можно написать

x=y(rq)/(pr) .

Поскольку у¹0, то

x/y = (rq)/(pr) .

Это значение будет давать решение задачи, если выполняется неравенство

(rq)/(pr)>0

которое, как нетрудно показать, имеет место, если значение r заключено между значениями р и q. Таким образом, если p¹q, то можно получить сплав с любым процентным содержанием меди между р и q.

Несмотря на то, что этот пример весьма простой, он достаточно хорошо иллюстрирует основной метод решения задач, связанных со смесями. Рассмотрим еще одну задачу.

Задача 2. Три одинаковые пробирки наполнены до половины растворами спирта. После того как содержимое третьей пробирки разлили поровну в первые две, объемная концентрация спирта в первой уменьшилась на 20% от первоначальной, а во второй увеличилась на 10% от первоначального значения. Во сколько раз первоначальное количество спирта в первой пробирке превышало первоначальное количество спирта во второй пробирке?

Решение. Введем в рассмотрение объем половины пробирки V0 и концентрации растворов спирта в каждой из пробирок с1 , с2 и с3 . Тогда первоначальное количество спирта в первой пробирке равно V0 с1 , во второй V0 с2 , в третьей V0 с3 (рис. 3).

Для того чтобы решить задачу, подсчитаем количество спирта в первой и второй пробирках после того, как туда добавят содержимое третьей пробирки. Эти количества будут равны:

в первой пробирке

V0 с1 +1/2 V0 c3 ,

во второй пробирке

V0 с2 +1/2 V0 c3 .

Найдем новые концентрации спирта в этих пробирках. Для первой пробирки она равна

с1 =V0 с1 +1/2 V0 c3 / 3/2 V0 ,

для второй

с2 =V0 с2 +1/2 V0 c3 / 3/2 V0 .

По условию задачи с1 * =0,8c1 и с2 * =1,1с2 , Тогда имеем систему двух уравнений с тремя неизвестными:

2/3 c1 +1/3 c3 =0,8c1 ,

2/3 c2 +1/3 c3 =1,1c2 ,

или

2c1 5c3 =0 ,

13c2 10c3 =0 .

Из этой системы, так же как и в предыдущей задаче нельзя определить все три концентрации с1 , c2 и c3 . Но благодаря тому, что уравнения системы представляют собой однородные линейные выражения, из нее можно найти отношения двух концентраций к третьей например, с13 и с23 :

m=с13 =5/2 , n=с23 =10/13 .

Количество спирта в первой пробирке относится к количеству спирта во второй пробирке, как m/n. Действительно,

V0 с1 /V0 с2 =m/n=13/4 .

Поэтому ответ в данной задаче такой: 13:4.

Обратимся теперь к задачам, которые можно объединить в одну группу изза того, что их решение связано с выявлением общей закономерности изменения той или иной величины в результате многократно повторяющейся операции.

Рассмотрим следующий пример.

Задача 3. В сосуде, объем которого равен V0 л, содержится р%ный раствор соли (рис. 4). Из сосуда выливается, a л смеси и доливается а л воды, после чего раствор перемешивается. Эта процедура повторяется n раз. Спрашивается, по какому закону меняется концентрация соли в сосуде, т.е. какова будет концентрация соли после n процедур?

Решение. Очевидно, что первоначальное количество соли в растворе равно

p/100 x V0 .

После того как отлили а л смеси, в растворе осталось

p/100 x V0 p/100 x a = p/100 x V0 (1a/V0 )

соли, а ее концентрация после добавления а л воды стала равной

c1 = p/100 х (1a/V0 ) .

После того как отлили еще а л смеси (но уже с концентрацией c1 ), в растворе осталось соли

1/100 х V0 (1a/V0 )c1 a= p/100 х V0 (1a/V0 )2 ,

а ее концентрация после добавления а л воды стала равной

c2 =p/100 х (1a/V0 )2 .

Нет надобности еще раз проделывать ту же процедуру, чтобы убедиться, что концентрация соли в растворе после n переливаний определяется формулой

cn =p/100 (1a/V0 )n , (формула 2)

А теперь решим несколько задач.

1. Задача на разбавление.

Из сосуда, наполненного кислотой, вылили несколько литров и долили водой; потом опять вылили столько же литров смеси, тогда в сосуде осталось 24л чистой кислоты. Емкость сосуда 54л. Сколько кислоты вылили в первый и второй раз?

Решение.

Пусть в первый раз вылили х литров кислоты. Тогда в сосуде осталось 54х литров кислоты. Во второй раз вылили х литров раствора кислоты концентрации

100(54х)/54%., то есть в этом растворе было х(54х)/54 чистой кислоты. То есть

х+х=5424

54х +54хх2 =5430

х2 – 108х + 1620 = 0

х1 =90не удовлетворяет условию задачи

х2 = 18

Следовательно, в первый раз вылили 18л кислоты, во второй раз – 12л.

2. Задача на смешивание. (задача № 491)

Условие приведено на стр.4.

Пусть х – масса 1го раствора, тогда концентрация его 0,8/х, масса второго раствора 10х, концентрация второго раствора 0,6/(10х). Следовательно,

= 0,1

0,8(10х) – 0,6х = 0,1х(10х)

х=20 не удовлетворяет условию задачи

х=4

Следовательно, масса первого раствора 4 кг, масса второго раствора 6 кг.

Учебная работа № 1047. Математика в химии и экономике