Учебная работа № 2075. Существование в геометрии. Анализ категорий модальности
Гутнер Г.
Мы видели, что две влиятельные математические школы XX века, которые справедливо рассматриваются как соперничающие между собой, исходят, в конечном счете, из общего философского основания. Этим основанием явилась для них философия Канта. Поэтому мы имеем право говорить о кантианской (или, возможно, трансценденталистской) традиции в основаниях математики. Обсуждая проблему существования и математической онтологии, мы будем иметь в виду именно эту традицию. Совершенно очевидно, что она не является единственно возможной. Ей явно противостоит иная традиция, связанная с именами Фреге и Рассела и обосновывающая математическое рассуждения средствами логического позитивизма (или аналитической философии). Мы не будем касаться этой традиции в рамках настоящей работы. Наиболее естественным для нас сейчас будет подробное рассмотрение той интерпретации существования математических объектов, которая предлагается самим Кантом.
1 Возможное и действительное в математике
Обсуждать проблему существования, оставаясь в рамках «Критики чистого разума», довольно удобно, поскольку определение существования дано в этой книге явно. «Существование» одна из трех категорий модальности и Кант весьма подробно описывает каким способом рассудок определяет предмет как существующий. С другой стороны, однако, определение существования (действительности) дается здесь в совокупности с определением двух других категорий модальности и может быть правильно понято лишь при сопоставлении с ними. Обратимся к непосредственному описанию обсуждаемых категорий: возможности, действительности и необходимости. Такое описание приведено в главе «Система всех основоположений чистого рассудка» и названо «Постулаты эмпирического мышления вообще».
«1. Что согласно с формальными условиями опыта (что касается наглядных представлений и понятий), то возможно.
2. Что связано с материальными условиями опыта (ощущения), то действительно.
3. То, связь чего с действительностью определяется согласно общим условиям опыта, существует необходимо.» (B266, курсив Канта).
В какой мере категория действительности (т.е. существования в собственном смысле этого слова) (См. примечание 1) может быть условием знания о предметах математики? Чтобы установить это, обратимся к краткому разъяснению Канта по поводу соответствующего постулата.
«Постулат действительности вещей требует восприятия, т.е. ощущения и сознания, если не непосредственно самого предмета, существование которого должно быть познано, то, по крайней мере связи его с какимлибо действительным восприятием согласно аналогиям опыта..» (B272 курсив Канта).
Едва ли рассуждение о математическом предмете может основываться на аналогиях опыта, призванных установить «реальные связи» (т.е. связь согласно законам причинности и взаимодействия). Следовательно постулат действительности требует непосредственного восприятия предмета для познания его существования. Поэтому как о действительном можно говорить, прежде всего, только о единичном предмете, представленном благодаря ощущению. Есть ли вообще в математике такие предметы? Несомненно есть, поскольку всякое математическое рассуждение так или иначе оставляет след на бумаге или на доске. Действительным является изображенный и непосредственно воспринимаемый математический символ, выписанная формула (конечная последовательность символов), начерченная геометрическая фигура. Но эти ли предметы представляют для математики основной интерес? Разве, например, в теореме о сумме внутренних углов треугольника говорится о неровном карандашном следе, о трех попарно пересекающихся на листе бумаги отнюдь не прямых линиях, которые непосредственно воспринимаются нами? Конечно же нет. Речь идет о треугольнике «вообще», который нигде и никак не нарисован. Но в таком случае он и не действителен.
Может ли предмет знания не быть действительным (т.е. существующим) предметом? Ответ на этот вопрос легко угадывается, благодаря присутствию в таблице категорий другой категории модальности. Предмет знания может быть возможным предметом. Сказанного здесь уже достаточно, чтобы предполагать, что именно о возможных предметах и говорит, прежде всего, математика. Математическая онтология есть по преимуществу онтология возможного. Впрочем, по этому поводу нужны дополнительные разъяснения.
Вот что пишет Кант о первой из категорий модальности: «Постулат возможности вещей требует, следовательно, чтобы понятия их согласовывались с формальными условиями опыта вообще. Но опыт вообще, т.е. объективная форма его, содержит в себе весь синтез, необходимый для познания объектов» (B267 курсив Канта).
Итак, вещь возможна, когда знание о ней содержит весь необходимый синтез. Следовательно лишь осуществив этот синтез, т.е. получив полное знание о вещи мы только и можем удостовериться в ее возможности.
Нашей дальнейшей задачей будет выяснение того, что означает для математики такая полнота синтеза. Но прежде обратим внимание на одно важное различение. В «Критике чистого разума» имеется ряд пассажей, в которых указывается на иной смысл слова «возможность». Под возможностью понимается отсутствие противоречия в понятии о вещи. Это, очевидно, не то же самое, что согласие с формальными условиями опыта. Поэтому Кант различает логическую и реальную (или трансцендентальную) возможность. Очевидно, что нас сейчас будет интересовать последняя. Интересно однако вспомнить, что пытаясь установить критерий существования для математических объектов, Пуанкаре, а за ним и Гильберт указывали в качестве такового именно свободу от противоречия. Верно ли то, что они сводили действительность к логической возможности, совершая таким образом своеобразную подмену категорий? Проведенный выше анализ гильбертовской интерпретации непротиворечивости показывает, что это не так, поскольку сама по себе непротиворечивость оказывается результатом синтеза.
Синтез по Канту состоит, прежде всего, в том, что к понятию, выступающему как субъект суждения, присоединяется признак (предикат), не содержащийся в понятии. Акт синтеза, таким образом, приводит к образованию нового понятия, содержание которого богаче, чем понятие первоначального субъекта суждения. Следовательно, говоря о реальной возможности, мы должны говорить, прежде всего, о возможности понятия. Оно возможно тогда, когда осуществлен его синтез. Однако присоединение предиката к субъекту в синтетическом суждении невозможно как чисто рассудочное действие. Ему должен соответствовать синтез многообразия наглядного представления, производимый способностью воображения. Произнесение суждения, описывающего некоторое реальное (См. примечание 2) положение дел, необходимо сопровождается конструированием этого положения дел в пространстве и времени. Последнее производится сообразно схеме понятия и необходимо представлено созерцанию в виде (по крайней мере) воображаемого предмета. Эта процедура подробно описана Кантом в главе о трансцендентальной дедукции категорий. Следовательно, «весь синтез», требуемый для познания реальной возможности вещи, включает в себя как интеллектуальный синтез, так и синтез способности воображения. Здесь уместно уточнить, что может стоять за словом «вещь». Возможность чего, собственно, устанавливается. Мы видели уже, что устанавливается возможность понятия. Но конструирование, производимое воображением, согласно условиям чувственности, не может происходить без того, чтобы представить образ, воображаемый результат конструирования. Очевидно, что образ, наряду с понятием, также должен фигурировать в качестве возможного.
Итак есть смысл говорить о возможности понятия и возможности образа. В самом деле и то и другое вопервых соответствует формальным условиям опыта, а вовторых противопоставлено действительному, т.е. представленной в восприятии единичности. Иными словами и понятие, и образ возможны поскольку могут быть осуществлены (актуализированы). Впрочем, они возможны в разном смысле. Можно представить себе невозможное понятие (Кант приводит пример плоской фигуры, ограниченной двумя прямыми). Но образ возможен всегда, поскольку является результатом завершенного синтеза. Разберем теперь все сказанное на примере геометрии. Тот факт, что евклидова геометрия является основным источником для философии математики Канта, принимается многими исследователями. В частности это объяснено в [72], [74], [79], [83], [62]. Поэтому рассмотрение кантовских категорий на материале «Начал» Евклида можно считать модельным. Это, однако, поможет нам увидеть некоторые моменты применения указанных чистых понятий рассудка, которые оказываются существенны и для других областей математики, а возможно и для всякого знания вообще.
Пять постулатов Евклида представляют собой пять первоначальных синтетических суждений, в которых конструируются начальные понятия геометрии. Важно то, что четыре из этих пяти постулатов (несколько отличается от прочих четвертый постулат, утверждающий равенство всех прямых углов) суть не сколько утверждения, сколько предписания. Они описывают некоторые операции, которые, будучи произведены, приведут к созданию первоначальных геометрических объектов: прямой, окружности, пары параллельных (или пары пересекающихся) прямых. Постулаты сформулированы, естественно, как общие суждения и речь в них идет об общих понятиях (прямая вообще или окружность вообще). Важно однако, что самая суть постулатов заключается в обнаружении возможности этих понятий. Они предполагают наличие схемы прямой или схемы окружности, сообразно которым могут быть построены соответствующие этим понятиям объекты. В частности, согласно двум первым постулатам, прямую в принципе можно построить. Как построить? Карандашом на бумаге или мелом на доске.
Последнее утверждение представляется, повидимому, слишком категоричным. Прямую или окружность можно провести и в воображении. Заметим однако, что несмотря на такую возможность почти всегда, даже при рассмотрении элементарных понятий предпочитают пользоваться чертежами. Это обстоятельство представляется нам важным, вытекающим из сути математического дискурса, а отнюдь не из слабости нашей памяти. Мы вернемся к этой проблеме позже, а сейчас заметим лишь, что синтетическое суждение, высказываемое в постулате, подразумевает не только возможность, но и действительность обсуждаемого объекта. Нам предстает не только понятие и образ, но также и чувственно воспринимаемый единичный предмет, который согласуется не только с формальными, но и с материальными условиями опыта.
Мы будем придерживаться той интерпретации «Начал» Евклида, о которой упоминает, например, Фридман ([72], c. 8889). Согласно этой интерпретации постулаты вводят ряд элементарных операций (построений), которые рассматриваются как заведомо выполнимые. Любое другое построение будет выполнимым, если оно представляет собой последовательность этих элементарных операций. (Естественно, что при дальнейшем изложении геометрии вместо элементарных операций могут фигурировать и более сложные построения, выполнимость которых показана ранее.) К развертыванию такой последовательность выполнимых операций сводится не только решение задач на построение, но и доказательство теорем. Всякое геометрическое предложение формулируется как некоторое общее утверждение. Это значит, что в нем предполагается возможность какоголибо понятия. Важно увидеть, что в любом предложении (т.е. в синтетическом суждении) речь идет именно об одном понятии. Добавляя к субъекту новый предикат, мы не устанавливаем отношение двух понятий, а создаем одно новое. Например, когда мы утверждаем, что сумма внутренних углов треугольника равна двум прямым, то предполагаем реальную возможность треугольника, обладающего названным признаком, т.е. мы говорим, что понятие «треугольник, сумма внутренних углов которого равна двум прямым» возможно. Выражение в кавычках неудачно в том смысле, что создает впечатление будто равенство суммы углов указанной величине есть некий различительный признак, выделяющий определенный вид в роде треугольников. Последнее, конечно же, неверно. Синтетическое суждение, являющееся содержанием приведенной теоремы, создает новое понятие, которое мы попытались назвать с помощью приведенного здесь несколько неуклюжего выражения. Это понятие нетождественно понятию треугольника, т.к. предикат не выводится из понятия субъекта. Он присоединяется к нему в процессе синтеза.
Проводимое далее доказательство, призванное показать реальность возможности обсуждаемого понятия, как раз и заключается в развертывании синтеза. Нам необходимо предъявить какуюлибо построенную по правилам конструкцию, соответствующую понятию, реальная возможность которого доказывается. Конструкция должна быть сооружена в результате ряда действий, предписанных постулатами. Последовательность применения постулатов составляет схему рассматриваемого понятия, а возможность понятия будет установлена, когда будет завершено построение конструкции. Иными словами, возможность понятия будет установлена, когда мы предъявим соответствующий этому понятию единичный предмет, воспринимаемый чувствами. Чтобы более точно рассмотреть взаимодействие возможного и действительного при доказательстве, нам представляется уместным развернуть процедуру доказательства подробнее, описав ее в тех терминах, которые использовались еще в античности.
2 Структура доказательства у Евклида в связи с категориями модальности
Сейчас пр