Учебная работа № 2054. Симметрия

Учебная работа № 2054. Симметрия

СОДЕРЖАНИЕ

 

………………………………………………………………………………………… 2
Человек — существо симметричное …………………………………………………. 3
Безукоризненная симметрия скучна ……………………………………………. 3
Что такое подобие? ……………………………………………………………………. 4
Загляните в словарь …………………………………………………………………… 5
Точки и линии …………………………………………………………………………… 6
Наш мир в зеркале …………………………………………………………………….. 7
Как отражает зеркало? …………………………………………………………………….. 10
От трельяжа до радара ……………………………………………………………….. 11
Легенды рудокопов ……………………………………………………………………. 13
Об асимметрии ……………………………………………………………………………….. 16
Асимметрия внутри симметрии ………………………………………………….. 16
Асимметрия любой ценой ………………………………………………………….. 18
Заключение …………………………………………………………………………………….. 21
Литература …………………………………………………………………………………….. 22

ВВЕДЕНИЕ

 

Данный реферат посвящён такому понятию современного естествознания как СИММЕТРИЯ.

Лейтмотивом всего реферата является понятие симметрии, играющей (есть мнение) ведущую, хотя и не всегда осоз­нанную, роль в современной науке, искусстве, технике и окру­жающей нас жизни. Симметрия пронизывает буквально все вокруг, захватывая, казалось бы, совершенно неожиданные области и объекты. Здесь уместно привести высказывание Дж. Ньюмена, который особенно удачно подчеркнул всеохватывающие и вездесущие проявления симметрии: «Сим­метрия устанавливает забавное и удивительное сродство между предметами, явлениями и теориями, внешне, казалось бы, ничем не связанными: земным магнетизмом, женской вуалью, поляри­зованным светом, естественным отбором, теорией групп, инва­риантами и преобразованиями, рабочими привычками пчел в улье, строением пространства, рисунками ваз, квантовой физикой, скарабеями, лепестками цветов, интерференционной картиной рентгеновских лучей, делением клеток морских ежей, равновесными конфигурациями кристаллов, романскими собо­рами, снежинками, музыкой, теорией относительности…».

В данной работе внимание заострено на зер­кальной симметрии. Такой подход вполне правомерен. Доста­точно взглянуть на окружающий нас реальный мир, чтобы убе­диться в первостепенном значении именно зеркальной симмет­рии с соответствующим симметричным элементом — плоско­стью симметрии. В самом деле, форма всех объектов, которые двигаются по земной поверхности или возле нее — шагают, плывут, летят, катятся, — обладает, как правило, одной более или менее хорошо выраженной плоскостью симметрии. Все то, что развивается или движется лишь в вертикальном направ­лении, характеризуется симметрией конуса, то есть имеет множество плоскостей симметрии, пересекающихся вдоль вертикальной оси. И то и другое объясняется действием силы земного тяготения, симметрия которого моделируется конусом.

Главенствующую роль в теории играет плоскость симметрии. Недаром знаменитый русский кристаллограф Г. В. Вульф (1863—1925) писал (1896) о плоскости симметрии как об «основном элементе симметрии». Комбинируя зеркальные отражения, можно вывести все возможные симметричные опе­рации. Исходя из этих комбинаций, можно полностью вывести все элементы классической симметрии — простые, сложные и винтовые оси, плоскости простого и скользящего отражения, трансляции. Совокупности таких элементов образуют виды симметрии (например, 32 класса для кристаллических многогранников, 230 пространственных групп для кристаллических структур). Как видим, именно плоскость симметрии лежит в основании всего здания симметричной теории.

ЧЕЛОВЕК — СУЩЕСТВО СИММЕТРИЧНОЕ

Не станем пока разбираться, существует ли на самом деле абсолютно симметричный человек. У каждого, разумеется, об­наружится родинка, прядь волос или какаянибудь другая деталь, нарушающая внешнюю симметрию. Левый глаз никогда не бывает в точности таким, как правый, да и уголки рта нахо­дятся на разной высоте, во всяком случае у большинства людей.

И все же это лишь мелкие несоответствия. Никто не усом­нится, что внешне человек построен симметрично: левой руке всегда соответствует правая и обе руки совершенно одинаковы!

НО! Здесь стоит остановиться. Если бы наши руки и в самом деле были совершенно одинаковы, мы могли бы в любой момент поменять их. Было бы возможно, скажем, путем трансплантации пересадить левую ладонь на правую руку, или, проще, левая перчатка подходила бы тогда к правой руке, но на самом деле это не так.

Каждому известно, что сходство между нашими руками, ушами, глазами и другими частями тела такое же, как между предметом и его отражением в зеркале. Именно вопросам симметрии и зеркального отражения здесь и уделяется внимание.

Многие художники обращали пристальное внимание на сим­метрию и пропорции человеческого тела, во всяком случае до тех пор, пока ими руководило желание в своих произведениях как можно точнее следовать природе. Известны каноны про­порций, составленные Альбрехтом Дюрером и Леонардо да Винчи. Согласно этим канонам, человеческое тело не только симметрично, но и пропорционально. Леонардо открыл, что тело вписывается в круг и в квадрат. Дюрер занимался поисками еди­ной меры, которая находилась бы в определенном соотношении с длиной туловища или ноги (такой мерой он считал длину руки до локтя).

В современных школах живописи в качестве единой меры чаще всего принимается размер головы по вертикали. С извест­ным допущением можно считать, что длина туловища превос­ходит размер головы в восемь раз. На первый взгляд это кажется странным. Но нельзя забывать, что большинство вы­соких людей отличаются удлиненным черепом и, наоборот, редко можно встретить низкорослого толстяка с головой удлиненной формы.

Размеру головы пропорциональна не только длина туло­вища, но и размеры других частей тела. По этому принципу построены все люди, оттогото мы в общем похожи друг на друга. Однако наши пропорции согласуются лишь прибли­зительно, а потому люди лишь похожи, но не одинаковы. Во всяком случае, все мы симметричны! К тому же некоторые художники в своих произведениях особенно подчеркивают эту симметрию.

БЕЗУКОРИЗНЕННАЯ СИММЕТРИЯ СКУЧНА

И в одежде человек тоже, как правило, старается поддержи­вать впечатление симметричности: правый рукав соответствует левому, правая штанина — левой.

Пуговицы на куртке и на рубашке сидят ровно посередине, а если и отступают от нее, то на симметричные расстояния.

Но на фоне этой общей симметрии в мелких деталях мы умышленно допускаем асимметрию, например расчесывая воло­сы на косой пробор — слева или справа. Или, скажем, помещая на костюме асимметричный кармашек на груди. Или надев кольцо на безымянный палец только одной руки. Лишь на одной стороне груди носятся ордена и значки (чаще на левой).

Полная безукоризненная симметрия выглядела бы нестер­пимо скучно. Именно небольшие отклонения от нее и придают характерные, индивидуальные черты.

И вместе с тем порой человек старается подчеркнуть, усилить различие между левым и правым. В средние века мужчины одно время щеголяли в панталонах со штанинами разных цветов (например, одной красной, а другой черной или белой). В не столь отдалённые дни были популярны джинсы с яркими заплатами или цвет­ными разводами. Но подобная мода всегда недолговечна. Лишь тактичные, скромные отклонения от симметрии остаются на долгие времена.

 

ЧТО ТАКОЕ ПОДОБИЕ?

Нередко мы говорим, что какието два человека похожи друг на друга. Дети обычно похожи на своих родителей (во всяком случае, по мнению их бабушек). Похожи, но не одинаковы!

Попробуем разобраться, что понимается под сходством или подобием в математике. У подобных фигур соответствующие отрезки пропорциональны друг другу. В нашем случае мы можем сформулировать это положение так: подобные носы имеют одинаковую форму, но могут отличаться размером. При этом каждому отдельному участку носа (например, переносице) должны быть пропорциональны все остальные.

Этот закон подобия иногда таит в себе подвох. Например, в задаче такого рода:

Высота башни А 10 м. На некотором расстоянии Х от нее находится шестиметровая башня В. Если провести прямые от подножия и от вершины башни А через вершину башни В, то они встретятся соответственно с подножием и вершиной башни С, имеющей высоту 15 м. Каково расстояние от башни А до баш­ни Д?

Казалось бы, для решения достаточно взять в руки циркуль и линейку. Но тут же выяснится, что ответов будет бесконечное множество. Иными словами, на вопрос о значении Х не может быть однозначного ответа.

Такого рода задачи, даже если они и не имеют решения, как, например, предложенная выше, касаются какойлибо проблемы, лежащей у пределов нашего знания. Большей частью это те самые пределы, перед которыми пасует знаме­нитый «здравый смысл», и лишь строго математическое логи­ческое мышление вкупе с естественнонаучным познанием спо­собно привести к правильному решению.

Обратимся снова к человеку: при сравнении живых существ сходство ощущается явно, если совпадают их пропорции. По­этому могут быть похожи дети и взрослые. Хотя масса и раз­меры любой из частей тела, будь то нос или рот, различны, но пропорции похожих индивидов совпадают.

Поразительный пример подобия — глазомерная оценка рас­стояния с помощью большого пальца. Таким способом военные и моряки прикидывают расстояние между двумя пунктами на местности или в море, сопоставляя их с шириной пальца или кулака. В самом простом случае закрывают один глаз и смотрят откры­тым глазом на палец вытянутой руки, используя его как визир.

Если раскрыть прежде закрытый глаз (а второй зажмурить), палец на видимое расстояние переместится в сторону. В градус­ном выражении это расстояние составляет 6°. И притом вели­чина этого «прыжка» (в пределах допустимой ошибки) одинакова у всех людей! Так, правофланговый роты, парень двухметро­вого роста, и самый маленький — левофланговый, ростом всего лишь метр шестьдесят, сравнив эти «прыжки» пальца, получат одну и ту же величину.

Причина этого явления в конечном счете кроется в подобии людей и, конечно, в законах оптики, которым подчиняется наше зрение.

Известно и «правило кулака» — в самом прямом смысле этого слова — для грубой прикидки величины угла. Если мы посмотрим одним глазом на кулак вытянутой руки (на сей раз одним и тем же глазом), то ширина кулака составит 10°, а рас­стояние между двумя косточками фаланг 3°. Кулак и оттопы­ренный в сторону большой палец составят 15°. Комбинируя эти мерки, можно приблизительно измерить все углы на местности.

И наконец, еще одна угловая мера нашего тела, которая может пригодиться при домашних работах. Угол между боль­шим пальцем и мизинцем растопыренной ладони составляет 90°.

ЗАГЛЯНИТЕ В СЛОВАРЬ!

 

В начале реферата человек назвался существом симметрич­ным. В дальнейшем же термин «симметрия» больше не употреб­лялся. Однако во всех случаях, когда отрезки прямой, плоские фигуры или пространственные тела были подобными, но без дополнительных действий сов­местить их было нельзя, «практически» нельзя, мы встречались с явлением симметрии. Эти элементы соответствовали друг другу, как картина и ее зеркальное отражение. Как левая и правая рука. Если мы возьмем на себя труд заглянуть в «Современный словарь иностран­ных слов», то обнаружим, что под симметрией понимается «соразмерность, полное соответствие в расположении частей целого относительно средней линии, центра… такое расположе­ние точек относительно точки (центра симметрии), прямой (оси симметрии) или плоскости (плоскости симметрии), при котором каждые две соответствующие точки, лежащие на одной прямой, проходящей через центр симметрии, на одном перпендикуляре к оси или плоскости симметрии, находятся от них на одинаковом расстоянии…»1

И это еще не все, как часто бывает с иностранными словами, значений у слова «симметрия» существует множество. В томто и состоит преимущество подобных выражений, что их можно использовать в случае, когда не хотят дать однозначное опре­деление или просто не знают четкого различия между двумя предметами.

Термин «соразмерный» мы применяем по отношению к человеку, картине или какомулибо предмету, когда мелкие не­соответствия не позволяют употребить слово «симметричный».

Давайте также заглянем в Энциклопедический словарь2 . Мы обнаружим здесь шесть статей, начинающихся со слова «симметрия». Кроме того, это слово встречается во множестве других статей.

В математике слово «симметрия» имеет не меньше семи значений (среди них симметричные полиномы, симметрические матрицы). В логике существуют симметричные отношения. Важ­ную роль играет симметрия в кристаллографии . Интересно интерпретируется понятие симметрии в биологии. Там описывается шесть различ­ных видов симметрии. Мы узнаем, например, что гребневики дисимметричны, а цветки львиного зева отличаются билатеральной симметрией. Мы обнаружим, что симметрия существует в музыке и хореографии (в танце). Она зависит здесь от чередования тактов. Оказывается, многие народные песни и танцы построены симметрично.

Основной интерес для нас будет представлять зеркальная сим­метрия — симметрия левого и правого. Можно увидеть, что это кажущееся ограничение уведет нас далеко в мир науки и техники и позволит время от времени подвергать испытанию способности нашего мозга (так как именно он запрограммирован на сим­метрию).

ТОЧКИ И ЛИНИИ

Порассуждаем о зеркальной симметрии. Легко установить, что каждая симметричная плоская фигура может быть с помощью зеркала совмещена сама с собой. Достойно удивления, что такие сложные фигуры, как пятиконечная звезда или равносторонний пятиугольник, тоже симметричны. Как это вытекает из числа осей, они отличаются именно высокой сим­метрией. И наоборот: не так просто понять, почему такая, казалось бы, правильная фигура, как косоугольный параллело­грамм, несимметрична. Сначала представляется, что параллель­но одной из его сторон могла бы проходить ось симметрии. Но стоит мысленно попробовать воспользоваться ею, как сразу убеждаешься, что это не так. Несимметрична и спираль.

В то время как симметричные фигуры полностью соответ­ствуют своему отражению, несимметричные отличны от него: из спирали, закручивающейся справа налево, в зеркале получится спираль, закручивающаяся слева направо.

Но то, что здесь выглядит шуткой, в практической жизни доставляет массу сложностей не только детям, но и взрослым. Нередко дети пишут некоторые буквы «навыворот». Латинское N выглядит у них как И, а S и Z получаются наоборот. Если мы внимательно посмотрим на буквы латинского алфавита (а это ведь тоже, в сущности, плоские фигуры!), то увидим среди них симметричные и несимметричные. У таких букв, как N,S , Z, нет ни одной оси симметрии (равно как и у F, G, J, L, Р, О и R). Но N,S и Z особенно легко пишутся «наоборот», тактак имеют центр симметрии. У остальных прописных букв есть как минимум по одной оси симметрии. Буквы А, М, Т, U, V, W и Y можно разделить пополам продольной осью симметрии. Буквы В, С, D, Е, I, К — попереч­ной осью симметрии. У букв Н, О и Х имеется по две взаимно перпендикулярные оси симметрии. (тот же эксперимент можно провести с любым алфавитом европейской группы).

Если вы поместите буквы перед зеркалом, расположив его параллельно строке, то заметите, что те из них, у которых ось симметрии проходит горизонтально, можно прочесть и в зеркале. А вот те, у которых ось расположена вертикально или отсут­ствует вовсе, становятся «нечитабельными».

Встречаются дети, которые пишут левой рукой, и все буквы получаются у них в зеркальном, отраженном, виде. «Зеркальным шрифтом» написаны дневники Леонардо да Винчи. Вероятно, не существует веского основания, заставляющего нас писать буквы именно так, как это делаем мы. Вряд ли зеркальным шрифтом труднее овладеть, чем обычным.

Правописание от этого не стало бы проще, а некоторые слова, как, например, ОТТО, вообще не изменились бы. Сущест­вуют языки, в которых начертание знаков опирается на наличие симметрии. Так, в китайской письменности иероглиф означает именно истинную середину.

В архитектуре оси симметрии используются как средства выражения архитектурного замысла. В технике оси симметрии наиболее четко обозначаются там, где требуется оценить откло­нение от нулевого положения, например на руле грузовика или на штурвале корабля.

НАШ МИР В ЗЕРКАЛЕ

 

В трехмерном мире пространственных тел, где мы с вами живем, существуют плоскости симметрии. «Зеркало» всегда имеет на одно измерение меньше, чем мир, который оно отражает. При взгляде на круглые тела сразу видно, что они имеют плоскости симметрии, но вот сколько именно — решить не всегда просто.

Поставим перед зеркалом шар и начнем его медленно вра­щать: изображение в зеркале никак не будет отличаться от ори­гинала, конечно в том случае, если шар не имеет какихлибо отличительных признаков на своей поверхности. Шарик для пингпонга обнаруживает бессчетное множество плоскостей симмет­рии. Возьмем нож, отрежем половину шара и поместим ее перед зеркалом. Зеркальное отражение вновь дополнит эту половинку до целого шарика.

Но если мы возьмем глобус и рассмотрим его симметрию, учитывая нанесенные на нем географические контуры, то мы не отыщем ни одной плоскости симметрии.

На плоскости фигурой с бесчисленным множеством осей симметрии был круг. Поэтому нас не должно удивлять, что в. пространстве аналогичные свойства присущи шару. Но если круг является единственным в своем роде, то в трехмерном мире имеется целый ряд тел, обладающих бесконечным множеством плоскостей симметрии: прямой цилиндр с кругом в основании, конус с круговым или полусферическим основанием, шар или сегмент шара. Или возьмем примеры из жизни: сигарета, сигара, стакан, конусообразный фунтик с мороженым, кусочек проволо­ки, труба.

Если мы повнимательней присмотримся к этим телам, то заметим, что все они так или иначе состоят из круга, через бесконечное множество осей симметрии которого проходит бес­численное множество плоскостей симметрии. Большинство таких тел (их называют телами вращения) имеют, конечно, и центр симметрии (центр круга), через который проходит по меньшей мере одна ось симметрии.

Отчетливо видна, например, ось у конуса фунтика с мороже­ным. Она проходит от середины круга (торчит из мороженого!) до острого конца конусафунтика. Совокупность элементов сим­метрии какоголибо тела мы воспринимаем как своего рода меру симметрии. Шар, без сомнения, в отношении симметрии является непревзойденным воплощением совершенства, идеалом. Древние греки воспринимали его как наиболее совершенное тело, а круг, естественно, как наиболее совершенную плоскую фигуру.

В целом эти представления вполне приемлемы и по сей день. Далее греческие философы делали вывод о том, что Вселенная, несомненно, должна быть построена по образцу математического идеала. Ясно, что у древних греков еще не было фунтиков с мороженым! Иначе бы такой прозаиче­ский предмет, имеющий бесчисленное множество плоскостей симметрии, мог бы нарушить их стройную систему.

Если для сравнения мы рассмотрим куб, то увидим, что он имеет девять плоскостей симметрии. Три из них делят его грани пополам, а шесть проходят через вершины. По сравнению с шаром это, конечно, маловато.

А имеются ли тела, занимающие по числу плоскостей проме­жуточное положение между шаром и кубом? Без сомнения — да. Стоит только вспомнить, что круг, в сущности, как бы состоит из многоугольников. Мы проходили это в школе при вычислении числа p. Если над каждым n угольником мы воздвигнем n угольную пирамиду, то сможем провести через нее n плоскостей сим­метрии.

Можно было бы придумать 32гранную сигару, которая имела бы соответствующую симметрию!

Но если мы тем не менее воспринимаем куб как более симмет­ричный предмет, чем пресловутый фунтик с мороженым, то это связано со строением поверхности. У шара поверхность всего одна. У куба их шесть — по числу граней, и каждая грань пред­ставлена квадратом. Фунтик с мороженым состоит из двух поверхностей: круга и конусообразной оболочки.

Более двух тысячелетий (вероятно, благодаря непосредствен­ному восприятию) традиционно отдается предпочтение «сораз­мерным» геометрическим телам. Греческий философ Платон (427—347 до н. э.) открыл, что из правильных конгруэнтных плоских фигур можно построить только пять объемных тел.

Из четырех правильных (равносторонних) треугольников по­лучается тетраэдр (четырехгранник). Из восьми правильных тре­угольников можно построить октаэдр (восьмигранник) и, нако­нец, из двадцати правильных треугольников — икосаэдр. И толь­ко из четырех, восьми или двадцати одинаковых треугольников можно получить объемное геометрическое тело. Из квадратов можно составить только одну объемную фигуру — гексаэдр (шес­тигранник), а из равносторонних пятиугольников — додекаэдр (двенадцатигранник).

А что в нашем трехмерном мире полностью лишено зеркальной симметрии?

Если на плоскости это была плоская спираль, то в нашем мире таковыми, безусловно, будут винтовая лестница или спи­ральный бур. Кроме того, существуют еще тысячи асимметрич­ных вещей и предметов в окружающей нас жизни и технике. Как правило, винт имеет правую резьбу. Но иногда встречается и левая. Так, для большей безопасности баллоны с пропаном снабжены левой резьбой, чтобы к ним нельзя было привинтить вентильредуктор, предназначенный, например, для баллона с другим газом.

Между шаром и кубом, с одной стороны, и винтовой лест­ницей, с другой, существует еще масса степеней симметрии. От куба можно постепенно отнимать плоскости симметрии, оси и центр, пока мы не придем к состоянию полной асимметрии.

Почти у конца этого ряда симметрии стоим, мы, люди, с всего единственной плоскостью симметрии, разделяющей наше тело на левую и правую половины. Степень симметрии у нас такая же, как, например, у обычного полевого шпата (минерала, образующего вместе со слюдой и кварцем гнейс или гранит).

КАК ОТРАЖАЕТ ЗЕРКАЛО

Конечно, все мы знаем, как отражает зеркало, но, если только потребуется описать это точно, несомненно возникнут трудности. Как правило, мы довольны собой, если чтото представляем себе хотя бы «в принципе». А подробности, которые преподаватели физики объясняли нам на доске с помощью мела и линейки, всякий нормальный школьник и сту­дент стараются забыть, и, чем скорее, тем лучше.

Каждый ребенок, исполненный удивления перед окружающим миром, непременно заинтересуется, каким образом зеркало отра­жает его. Но взрослые обычно отвечают в подобных случаях: «Не задавай глупых вопросов!» Человек сникает, начинает стеснять­ся, удивление его постепенно затухает, и он старается больше не проявлять его до конца жизни (а жаль!).

Но вспомним о словах Бертольда Бреста: «Глупых вопросов не быва­ет, бывают только глупые ответы».

Конечно, людей можно разделить на дураков и умных, на больших и маленьких, они разнятся по языку, вероисповеданию, мировоззрению. Можно представить себе и такой способ подраз­деления:

1) люди, которые никогда не удивляются;

2) люди, которые удивляются, но не задумываются над удивившим их явлением;

3) люди, которые, удивившись, спрашивают «а почему?»;

4) люди, которые, удивившись, обращаются к числу и мере.

В зависимости от условий жизни, традиций, степени образо­ванности встречаются и все возможные «промежуточные» сту­пени. Мыслители античности и средневековья изумлялись миру и думали о его тайнах. Но им лишь изредка выпадал случай измерить какоелибо явление.

Только в эпоху Возрождения, то есть в XVI в., люди пришли к убеждению, что измерение лучше слепой веры или схоласти­ческих рассуждений. Этому способствовали экономические инте­ресы, удовлетворить которые можно было только путем разви­тия естественных наук, путем количественных измерений. (Мы видим, что, по существу, меновая стоимость «измерялась» с помощью денег.) Для XVI в. оптика была ультрасовременной наукой. Из стеклянного шара, наполненного водой, которым пользовались как фокусирующей линзой, возникло увеличитель­ное стекло, а из него микроскоп и подзорная труба. Крупнейшей в те времена морской державе Нидерландам требовались для флота хорошие подзорные трубы, чтобы загодя рассмотреть опасный берег или вовремя уйти от врага. Оптика обеспечивала успех и надежность навигации. Поэтому именно в Нидерландах многие ученые занимались ею. Голландец Виллеброрд, Снелль ван Ройен, именовавший себя Снеллиусом (1580 1626), наблю­дал (что, впрочем, видели и многие до него), как тонкий луч света отражается в зеркале. Он просто измерил угол падения и угол отражения луча (чего до него не делал никто) и установил закон: угол падения равен углу отражения.

Теперь, задним числом, этот закон кажется нам чемто само собой разумеющимся. Но в те времена он имел огромное, можно сказать, мировоззренческое значение, которое будило философ­скую мысль вплоть до XIX века.

Закон отражения Снеллиуса объясняет явление зеркального отражения.

Каждой точке предмета соответствует её отражение в зеркале, и потому в нём наш правый глаз перемещается на левую сторону. Вследствие этого переноса точек предметы, расположенные дальше, в зеркале тоже кажутся уменьшенными в соответствии с законами перспективы. Технически мы можем реконструировать зеркальное изображение так, словно оно расположено за поверхностью стекла. Но это только кажущееся восприятие. Не случайно животные и маленькие дети часто заглядывают за зеркало; они верят, что изображение таится сзади, словно картина, видимая за окном. Факт перестановки левого и правого правильно осознается только взрослыми.

ОТ ТРЕЛЬЯЖА ДО РАДАРА

 

Должны ли мы считать, что самих себя видим только в «зеркальном отражении» и в лучшем случае лишь на фото и кинопленке можем узнать, как выглядим «на самом деле»?

Конечно нет: достаточно зеркальное изображение вторично отразить в зеркале, чтобы увидеть свое истинное лицо. Нередко в домах трельяжи. Они имеют одно большое главное зеркало в центре и два меньших зеркала по сторонам. Если такое боковое зеркало поставить под прямым углом к среднему, то можно увидеть себя именно в том виде, в каком вас видят окружающие. Зажмурьте левый глаз, и ваше отражение во вто­ром зеркале повторит ваше движение левым глазом. Перед трельяжем вы можете выбирать, хотите ли вы увидеть себя в зеркальном или в непосредственном изображении.

Угловое зеркало с прямым углом между составляющими его зеркалами отличается еще некоторыми интересными свойствами. Если смастерить его из двух маленьких зеркал, то можно убедиться в том, что в таком зеркале с прямоугольным раст­вором (а сейчас речь только о нем) отраженный луч света всегда параллелен падающему лучу. Это очень важное свойство. Но не единственное! При повороте углового зеркала вокруг оси, соединяющей зеркала (в определенных пределах), отраженный луч не изменит своего направления.

В технике обычно не составляют зеркала, а используют прямоугольную призму, у которой соответствующие грани обеспечивают зеркальный ход лучей.

Прямоугольные призмы, как бы «складывающие» ход луча «гармошкой», сохраняя его необходимую длину, заданную фо­кусным расстоянием линзы, позволяют уменьшать габариты оптических приборов. В призматических биноклях лучи света при помощи таких приборов обращаются на 180°.

На старинных картинах можно видеть капитанов и полковод­цев с непомерно длинными подзорными трубами. Благодаря угловым зеркалам старинные подзорные трубы превратились в современные бинокли.

Игрокам в бильярд издавна знакомо действие отражения. Их «зеркала» — это борта игрового поля, а роль луча света испол­няют траектории шаров. Ударившись о борт возле угла, шар катится к стороне, расположенной под прямым углом, и, отра­зившись от нее, движется обратно параллельно направлению пер­вого удара.

Свойство отраженного луча сохранять направление при пово­роте углового зеркала вокруг оси находит широкое применение в технике. Так, в трехгранном зеркальном уголковом отражателе луч сохраняет постоянное направление, несмотря на весьма сильные качания зеркала. По форме такое зеркало представляет собой кубик с отрезанным уголком. И в этом случае на практике используют не три зеркала, а соответствующую стеклянную призму с зеркальными гранями.

Важной областью применения трехгранного зеркала служит уголковый отражатель (кошачий глаз, катофот) на велосипедах, мотоциклах, сигнальных предохранительных щитах, ограничите­лях проезжей части улицы. С какой бы стороны ни упал свет на такой отражатель, световой рефлекс всегда сохраняет направле­ние источника света.

Большую роль трехгранные зеркальные уголковые отражате­ли играют в радиолокационной технике. Самолеты и крупные стальные корабли отражают луч радара. Несмотря на значи­тельное рассеяние его, той небольшой доли отраженных радио­волн, которая возвращается к радару, обычно достаточно для распознания объекта.

Хуже обстоит дело с маленькими суденышками, сигнальными поплавками и пластиковыми парусными яхтами. У небольших предметов отражение слишком слабое. Пластиковые яхты так же «прозрачны» для радиоволн, на которых работает радарная техника, как оконные стекла для солнечного света. Поэтому парусные яхты и сигнальные буйки оснащают метал­лическими уголковыми отражателями. Длина граней у такого «зеркала» всего около 30 см, но этого довольно, чтобы возвра­щать достаточно мощное эхо.

Вернемся еще раз к угловому зеркалу из двух соединенных зеркал. Качнем его ось вправо или влево — наше изображение тоже наклонится в сторону. Мы можем даже положить его, если поместим ось зеркала горизонтально. Но, наклонив зеркало еще дальше, мы заметим, что изображение «выпрямляется».

Угловое зеркало имеет плоскость симметрии, которая делит пополам пространство между обоими зеркалами. При соответствующей форме оно может иметь еще одну плоскость, перпенди­кулярную зеркалам, но она здесь не рассматривается. Нас интересует только плоскость симметрии, проходящая между зер­калами, в которой, так сказать, взаимно отражаются оба зеркала.

Каждая плоскость симметрии меняет, как нам уже известно, правое на левое (и наоборот). Но это несколько упрощенное вос­приятие. Если бы плоскость симметрии умела говорить, она бы заявила: «Я не меняю ни правое на левое, ни верх на низ. Я во­обще не знаю, что это такое. Я лишь точка за точкой отображаю все, что находится по одну или другую сторону от меня. Если че­ловек своей продольной осью встанет параллельно моей оси, я поменяю ему правую и левую стороны, но если тот же человек своей продольной осью расположится перпендикулярно моей оси (ибо я всегда остаюсь неизменной), то я поменяю то, что люди называют верхом и низом». Как видим, все зависит от точки зрения.

Но в конечном итоге истинно то, что можно измерить и со­считать. Сегодня мы не видим особого достижения в том, что Снеллиус измерил углы падения и отражения луча. Но мы не должны забывать, что ученые XVI в. подобными открытиями ломали более чем двадцативековую традицию.

Среди секретов телевидения известен трюк с уменьшением исполнителя, который на фоне всей окружающей обстановки «в натуральную величину» выглядит маленькой куколкой. Иног­да зритель может видеть актера одновременно в двух масштабах: на переднем плане в обычную величину, а на заднем в умень­шенном.

Тому, кто искушен в фотографии, понятно, как достигается подобный эффект. Сначала снимается уме

Учебная работа № 2054. Симметрия

Яндекс.Метрика