Учебная работа № 1843. Уравнения с параметрами

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (6 оценок, среднее: 4,67 из 5)
Загрузка...
Контрольные рефераты

Учебная работа № 1843. Уравнения с параметрами

ПЛАН

Глава 1.

§1. Теоретические основы решения уравнений с параметрами.

§2. Основные виды уравнений с параметрами.

Глава 2.

§1. Разработка факультативных занятий по теме.

Заключение.

ВВЕДЕНИЕ

Главной целью факультативных занятий по математике являются расширение и углубление знаний, развитие интереса учащихся к предмету, развитие их математических способностей. Процесс обучения строится как совместная исследовательская деятельность учащихся.

Большую роль в развитии математического мышления учащихся на факультативных занятиях играет изучение темы «Уравнения с параметрами». Вместе с тем изучение этой темы в школьной программе не уделено достаточного внимания. Интерес к теме объясняется тем, что уравнения с параметрами предлагаются как на школьных выпускных экзаменах, так и на вступительных экзаменах в вузы.

Целью курсовой работы является ознакомление учащихся с теоретическими основами решения уравнений с параметрами, основными их видами и рекомендациями к решению.

ГЛАВА 1

§1. Теоретические основы решения уравнений с параметрами.

Рассмотрим уравнение

F (х, у, …, z; α,β, …, γ ) = 0 (F )

с неизвестными х, у, …, z и с параметрами α,β, …, γ ;при всякой допустимой системе значений параметров α00 , …, γ0 уравнение (F) обращается в уравнение

F(х, у, …, z; α00 , …, γ0 ) = 0(F0 )

с неизвестными х, у,…, z, не содержащее параметров. Уравнение (Fo ) имеет некоторое вполне определенное множество (быть, может, пустое) решений.

Аналогично рассматриваются системы уравнений, содержащих параметры. Допустимыми системами значений параметров считаются системы, допустимые для каждого уравнения в отдельности.

Определение. Решить уравнение (или систему), содержащее параметры, это значит, для каждой допустимой системы значений параметров найти множество всех решений данного уравнения (системы).

Понятие эквивалентности применительно к уравнению, содержащим параметры, устанавливается следующим образом.

Определение. Два уравнения (системы)

F(х, у, …, z; α,β, …, γ) = 0 (F ),

Ф (х, у, …, z; α,β, …, γ) = 0 (Ф )

с неизвестным х, у,…, z и с параметрами α,β, …, γ называются эквивалентными, если для обоих уравнений (систем) множество допустимых систем значений параметров одно и то же и при всякой допустимой системе значений, параметров оба уравнения (системы уравнений) эквивалентны.

Итак, эквивалентные уравнения при всякой допустимой системе значений параметров имеют одно и то же множество решений.

Преобразование уравнения, изменяющее множество допустимых систем значений параметров, приводит к уравнению, не эквивалентному данному уравнению.

Предположим, что каждое из неизвестных, содержащихся в уравнении

F(x, у,,z; α,β, …, γ) =0 (F )

задано в виде некоторой функции от параметров: х = х(α,β, …, γ );

у = у(α,β, …, γ);….

z= z (α,β, …, γ). (Х)

Говорят, что система функций (Х ), заданных совместно, удовлетворяет уравнению (F ), если при подстановке этих функций вместо неизвестных х, у,…, z в уравнение (F) левая его часть обращается в нуль тождественно при всех допустимых значениях параметров:

F ( x (α,β, …, γ), y( α,β, …, γ),…, z (α,β, …, γ ) ≡0.

При всякой допустимой системе численных значений параметров α = α0 ,β=β0 , …, γ= γ0 соответствующие значения функций (Х ) образуют решение уравнения

F(х, у, …, z; α00 , …, γ0 ) = 0

§2. Основные виды уравнений с параметрами .

Линейные и квадратные уравнения.

Линейное уравнение, записанное в общем виде, можно рассматривать как уравнение с параметрами : ах = b , где х – неизвестное, а, b – параметры. Для этого уравнения особым или контрольным значением параметра является то, при котором обращается в нуль коэффициент при неизвестном.

При решении линейного уравнения с параметром рассматриваются случаи, когда параметр равен своему особому значению и отличен от него.

Особым значением параметра а является значение а = 0.

1. Если а ≠ 0 , то при любой паре параметров а и b оно имеет единственное решение х = .

2. Если а = 0, то уравнение принимает вид: 0 х = b . В этом случае значение b = 0 является особым значением параметра b .

2.1. При b ≠ 0 уравнение решений не имеет.

2.2. При b = 0 уравнение примет вид : 0 х = 0. Решением данного уравнения является любое действительное число.

П р и м е р . Решим уравнение

2а(а — 2) х=а — 2. (2)

Р е ш е н и е. Здесь контрольными будут те значения параметра, при которых коэффициент при х обращается в 0. Такими значениями являются а=0 и а=2. При этих значениях а невозможно деление обеих частей уравнения на коэффициент при х. В то же время при значениях параметра а≠0, а≠2 это деление возможно. Таким образом, целесообразно множество всех действительных значений параметра разбить на подмножества

A1 ={0}, А2 ={2} и Аз= {а ≠0, а ≠2}

и решить уравнение (2) на каждом из этих подмножеств, т. е. решить уравнение (2) как семейство уравнений, получающихся из него при следующих значениях параметра:

1) а= 0 ; 2) а= 2 ; 3) а≠0, а≠2

Рассмотрим эти случаи.

1) При а= 0уравнение (2) принимает вид 0 х = — 2. Это уравнение не имеет корней.

2) При а= 2уравнение (2) принимает вид 0 х =0. Корнем этого уравнения является любое действительное число.

3) При а≠0, а≠2 из уравнения (2) получаем, х=

откуда х= .

0 т в е т: 1) если а= 0, то корней нет; 2) если а= 2, то х — любое действительное число; 3) если а ≠0, а ≠2 , то х =

П р и ме р . Решим уравнение

(а — 1) х 2 +2 (2а +1) х +(4а +3) =0; (3)

Р е ш е н и е. В данном случае контрольным является значение a =1. Дело в том, что при a =1 уравнение (3) является линейным, а при а≠ 1 оно квадратное (в этом и состоит качественное изменение уравнения). Значит, целесообразно рассмотреть уравнение (3) как семейство уравнений, получающихся из него при следующих значениях параметра: 1) а =l; 2) а ≠1.

Рассмотрим эти случаи.

1) При a =1 уравнение (3) примет вид бх +7=0. Из этого

уравнения находим х= .

2) Из множества значений параметра а≠ 1 выделим те значения, при которых дискриминант уравнения (3) обращается в 0.

Дело в том, что если дискриминант D=0 при а=ао , то при переходе значения D через точку ао дискриминант может изменить знак (например, при а<ао D< 0, а при а>ао D>0). Вместе с этим при переходе через точку ао меняется и число действительных корней квадратного уравнения (в нашем примере при а<ао корней нет, так как D< 0, а при а>ао D>0 уравнение имеет два корня). Значит, можно говорить о качественном изменении уравнения. Поэтому значения параметра, при которых обращается в 0 дискриминант квадратного уравнения, также относят к контрольным значениям.

Составим дискриминант уравнения (3):

=(2а+ l)2 — (а — 1) (4а+3). После упрощений получаем = 5а+4.

Из уравнения =0 находим а= второе контрольное значение параметра а. При

этом если а < , то D <0; если a , , то D≥0.

a ≠ 1

Таким образом, осталось решить уравнение (3) в случае, когда а < и в случае, когда { a , a ≠ 1 }.

Если а < , то уравнение (3) не имеет действительных корней; если же

{ a , a ≠ 1 }, то находим

Ответ: 1) если а < , то корней нет ; 2) если а = 1, то х = ;

3) a , то

a ≠ 1

Дробнорациональные уравнения с параметрами, сводящиеся к линейным.

Процесс решения дробных уравнений протекает по обычной схеме: дробное уравнение заменяется целым путем умножения обеих частей уравнения на общий знаменатель левой и правой его частей. После чего учащиеся решают известным им способом целое уравнение, исключая посторонние корни, т. е. числа, которые обращают общий знаменатель в нуль. В случае уравнений с параметрами эта задача более сложная. Здесь, чтобы исключить посторонние корни, требуется находить значение параметра, обращающее общий знаменатель в нуль, т. е. решать соответствующие уравнения относительно параметра.

П р и м ер . Решим уравнение

(4)

Р е ш е н и е. Значение а=0 является контрольным. При a =0 уравнение (4) теряет смысл и, следовательно, не имеет корней. Если а≠0, то после преобразований уравнение (4) примет вид:

х 2 +2 (1 — а ) х +а 2 — 2а — 3= 0. (5)

Найдем дискриминант уравнения (5)

= (1 — a )2 — (a 2 — 2а — 3) = 4.

Находим корни уравнения (5):

х 1 =а + 1, х 2 = а3.

При переходе от уравнения (4) к уравнению (5) расширилась

область определения уравнения (4), что могло привести к появлению посторонних корней. Поэтому необходима проверка.

П р о в е р к а. Исключим из найденных значений х такие, при которых х 1 +1=0, х 1 +2=0, х 2 +1=0, х 2 +2=0.

Если х 1 +1=0, т. е. (а +1)+1=0, то а= — 2. Таким образом, при а= — 2 х 1 — посторонний корень уравнения (4).

Если х 1 +2=0, т. е. (а +1)+2=0, то а= — 3. Таким образом, при а= — 3 x 1 — посторонний корень уравнения (4).

Если х 2 +1 =0, т. е. (а — 3)+1=0, то а= 2. Таким образом, при а= 2 х 2 — посторонний корень уравнения (4)’.

Если х 2 +2=0, т. е. (а — 3)+2=0, то а =1. Таким образом, при а= 1 х 2 — посторонний корень уравнения (4).

Для облегчения выписывания ответа сведем полученные результаты на рисунке .

только х 2 только х 2 корней нет только х 1 только х 1

х 1,2 х 1,2 х 1,2 х 1,2 х 1,2 х 1,2

3 2 0 1 2 а

В соответствии с этой иллюстрацией при а= — 3 получаем х = — 3 — 3= — 6;

при a = — 2 х = — 2 — 3= — 5; при a =1 х = 1+1=2; при a=2 х =2+1=3.

Итак, можно записать

От в ет: 1) если a = — 3, то х = — 6; 2) если a = — 2, то х = — 5; 3) если a =0, то корней нет; 4) если a = l, то х =2; 5) если а=2, то х =3;

6) если а ≠ 3 ;

а ≠ 2 ;

а ≠ 0 ; то х 1 = а + 1,

а ≠ 1 ; х 2 = а – 3.

Учебная работа № 1843. Уравнения с параметрами