Учебная работа № 1638. Определенный интеграл

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (6 оценок, среднее: 4,67 из 5)
Загрузка...

Учебная работа № 1638. Определенный интеграл

ИНТЕГРАЛ (от лат. Integer целый ) одно из важнейших понятий математики, возникшее в связи с потребностью, с одной стороны отыскивать функции по их производным (например, находить функцию, выражающую путь, пройденный движущейся точкой, по скорости этой точки), а с другой измерять площади, объемы, длины дуг, работу сил за определенный промежуток времени и т. п.

СВЕДЕНИЯ ИЗ ИСТОРИИ О ПРОИСХОЖДЕНИИ ТЕРМИНОВ И ОБОЗНАЧЕНИЙ

Символ введен Лейбницем (1675 г.). Этот знак является изменением латинской буквы S (первой буквы слова сумма). Само слово интеграл придумал Я. Бернулли (1690 г.) . Вероятно, оно происходит от латинского integero , которое переводится как приводить в прежнее состояние, восстанавливать. ( Действительно, операция интегрирования восстанавливает функцию, дифференцированием которой получена подынтегральная функция.) Возможно происхождение слова интеграл иное: слово integer означает целый.

В ходе переписки И. Бернулли и Г. Лейбниц согласились с предложением Я. Бернулли. Тогда же , в 1696г., появилось и название новой ветви математики интегральное исчисление ( calculus integralis ), которое ввел И. Бернулли.

Другие известные вам термины, относящиеся к интегральному исчислению , появились значительно позднее. Употребляющееся сейчас название первообразная функция заменило более раннее примитивная функция , которое ввел Лагранж (1797 г.). Латинское слово primitivus переводится как начальный ”: F(x)= начальная (или первоначальная, или первообразная) для функции f(x) , которая получается из F(x) дифференцированием.

В современной литературе множество всех первообразных для функции f(x) называется также неопределенным интегралом . Это понятие выделил Лейбниц , который заметил, что все первообразные функции отличаются на произвольную постоянную. А называют определенным интегралом (обозначение ввел К. Фурье (17681830), но пределы интегрирования указывал уже Эйлер).

Самое важное из истории интегрального исчисления

Возникновение задач интегрального исчисления связано с нахождением площадей и объемов. Ряд задач такого рода был решен математиками древней Греции. Античная математика предвосхитила идеи интегрального исчисления в значительно большей степени, чем дифференциального исчисления. Большую роль при решении таких задач играл исчерпывающий метод, созданный Евдоксом Книдским (ок. 408 ок. 355 до н. э.) и широко применявшийся Архимедом (ок. 287 212 до н. э.).

Однако Архимед не выделил общего содержания интеграционных приемов и понятий об интеграле, а тем более не создал алгоритма интегрального исчисления. Ученые Среднего и Ближнего Востока в IX XV веках изучали и переводили труды Архимеда на общедоступный в их среде арабский язык, но существенно новых результатов в интегральном исчислении они не получили.

Деятельность европейских ученых в это время была еще более скромной. Лишь в XVI и XVII веках развитие естественных наук поставило перед математикой Европы ряд новых задач, в частности задачи на нахождение квадратур (задачи на вычисление площадей фигур), кубатур (задачи на вычисление объемов тел) и определение центров тяжести .

Труды Архимеда, впервые изданные в 1544 (на латинском и греческом языках), стали привлекать широкое внимание, и их изучение явилось одним из важнейших отправных пунктов развития интегрального исчисления . Архимед предвосхитил многие идеи интегрального исчисления . Но потребовалось более полутора тысяч лет, прежде чем эти идеи нашли четкое выражение и были доведены до уровня

Учебная работа № 1638. Определенный интеграл