Учебная работа № 1589. Изучение функций в курсе математики VIIVIII классов

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (6 оценок, среднее: 4,67 из 5)
Загрузка...

Учебная работа № 1589. Изучение функций в курсе математики VIIVIII классов

Изучение функций в курсе математики VII VIII классов

Курсовая работа по теории и методике обучения математике на тему

Выполнила студентка группы Мз401 Барейчева Л.В.

Федеральное агентство по образованию

Тольяттинский государственный университет

Кафедра алгебры и геометрии

Tольятти 2005 г.

Данная курсовая работа посвящена изучению функций в курсе математики VIIVIII классов. В ней даётся исторический экскурс определения понятия функции, рассматриваются различные подходы к введению понятия функции в школе. Отдельно рассматриваются общие вопросы методики введения понятий: независимой и зависимой переменной, функциональной зависимости, аргумента, функции, области определения функции. Приводятся примеры.

Основная часть курсовой работы направлена на рассмотрение вопросов методики изучения в VIIVIII классах школьного курса математики функций, образующих классы, которые обладают общностью аналитического способа задания функций, сходными особенностями графиков, областей применения. Освоение индивидуально заданной функции происходит в сопоставлении черт, специфических для неё, с общим представлением о функции. Особое внимание уделено методике изучения линейной, квадратичной и кубической функций и их графиков, а также рассматриваются понятия обратной функции и функции вида y=√¯x.

Определение функции

Начиная с XVII в. одним из важнейших понятий является понятие функции. Оно сыграло и поныне играет большую роль в познании реального мира.

Идея функциональной зависимости восходит к древности, она содержится уже в первых математически выраженных соотношениях между величинами, в первых правилах действий над числами, в первых формулах для нахождения площади и объема тех или иных фигур.

Те вавилонские ученые, которые 45 тысяч лет назад нашли для площади S круга радиусом r формулу S=3r2 (грубо приближенную), тем самым установили, пусть и не сознательно, что площадь круга является функцией от его радиуса. Таблицы квадратов и кубов чисел, также применявшиеся вавилонянами, представляют собой задания функции.

Однако явное и вполне сознательное применение понятия функции и систематическое изучение функциональной зависимости берут свое начало в XVII в. в связи с проникновением в математику идеи переменных. В “Геометрии” Декарта и в работах Ферма, Ньютона и Лейбница понятие функции носило по существу интуитивный характер и было связано либо с геометрическими, либо с механическими представлениями: ординаты точек кривых функции от абсцисс (х); путь и скорость функции от времени (t) и тому подобное.

Четкого представления понятия функции в XVII в. еще не было, путь к первому такому определению проложил Декарт, который систематически рассматривал в своей “Геометрии” лишь те кривые, которые можно точно представить с помощью уравнений, притом преимущественно алгебраических. Постепенно понятие функции стало отождествляться таким образом с понятием аналитического выражения формулы.

Слово “функция” (от латинского functio совершение, выполнение) Лейбниц употреблял с 1673 г. в смысле роли (величина, выполняющая ту или иную функцию). Как термин в нашем смысле выражение “функция от х” стало употребляться Лейбницем и И. Бернулли; начиная с 1698 г. Лейбниц ввел также термины “переменная” и “константа” (постоянная). Для обозначения произвольной функции от х Иоганн Бернулли применял знак j х, называя j характеристикой функции, а также буквы х или e; Лейбниц употреблял х1 , х2 вместо современных f1(x), f2(x). Эйлер обозначал через f : х, f : (x + y) то, что мы ныне обозначаем через f (x), f (x + y). Наряду с j Эйлер предлагает пользоваться и буквами F, Y и прочими. Даламбер делает шаг вперед на пути к современным обозначениям, отбрасывая эйлерово двоеточие; он пишет, например, j t, j (t + s).

Явное определение функции было впервые дано в 1718 г. одним из учеников и сотрудников Лейбница, выдающимся швейцарским математиком Иоганном Бернулли: “Функцией переменной величины называют количество, образованное каким угодно способом из этой переменной величины и постоянных”.

Леонард Эйлер во “Введении в анализ бесконечных” (1748) примыкает к определению своего учителя И. Бернулли, несколько уточняя его. Определение Л. Эйлера гласит: “Функция переменного количества есть аналитическое выражение, составленное какимлибо образом из этого количества и чисел или постоянных количеств”. Так понимали функцию на протяжении почти всего XVIII в. Даламбер, Лагранж и другие видные математики. Что касается Эйлера, то он не всегда придерживался этого определения; в его работах понятие функции подвергалось дальнейшему развитию в соответствии с запросами математической науки. В некоторых своих произведениях Л. Эйлер придает более широкий смысл функции, понимая ее как кривую, начертанную “свободным влечением руки”. В связи с таким взглядом Л. Эйлера на функцию между ним и его современниками, в первую очередь его постоянным соперником, крупным французским математиком Даламбером, возникла большая полемика вокруг вопроса о возможности аналитического выражения произвольной кривой и о том, какое из двух понятий (кривая или формула) следует считать более широким. Так возник знаменитый спор, связанный с исследованием колебаний струны.

В “Дифференциальном исчислении”, вышедшем в свет в 1755 г, Л. Эйлер дает общее определение функции: “Когда некоторые количества зависят от других таким образом, что при изменении последних и сами они подвергаются изменению, то первые называются функциями вторых”. “Это наименование, продолжает далее Эйлер, имеет чрезвычайно широкий характер; оно охватывает все способы, какими одно количество определяется с помощью других”. На основе этого определения Эйлера французский математик С. Ф. Лакруа в своем “Трактате по дифференциальному и интегральному исчислению”, опубликованном в 1797 г., смог записать следующее: “Всякое количество, значение которого зависит от одного или многих других количеств, называется функцией этих последних независимо от того, известно или нет, какие операции нужно применить, чтобы перейти от них к первому”.

Как видно из этих определений, само понятие функции фактически отождествлялось с аналитическим выражением. Новые шаги в развитии естествознания и математики в XIX в. вызвали и дальнейшее обобщение понятия функции.

Большой вклад в решение спора Эйлера, Даламбера, Д. Бернулли и других ученых XVIII в. по поводу того, что следует понимать под функцией, внес французский математик Жан Батист Жозеф Фурье (17681830), занимавшийся в основном математической физикой. В представленных им в Парижскую Академию наук в 1807 и 1811 гг., работах по теории распространения тепла в твердом теле Фурье привел и первые примеры функций, которые заданы на различных участках различными аналитическими выражениями.

Из трудов Фурье явствовало, что любая кривая независимо от того, из скольких и каких разнородных частей она составлена, может быть представлена в виде единого аналитического выражения и что имеются также прерывные кривые, изображаемые аналитическим выражением. В своем “Курсе алгебраического анализа”, опубликованном в 1821 г., французский математик О. Коши обосновал выводы Фурье. Таким образом, на известном этапе развития физики и математики стало ясно, что приходится пользоваться и такими функциями, для определения которых очень сложно или даже невозможно ограничиться одним лишь аналитическим аппаратом. Последний стал тормозить требуемое математикой и естествознанием расширение понятия функции.

В 1834 г. в работе “Об исчезании тригонометрических строк” Н. И. Лобачевский, развивая вышеупомянутое эйлеровское определение функции в 1755 г., писал: “Общее понятие требует, чтобы функцией от х называть число, которое дается для каждого х и вместе с х постепенно изменяется. Значение функции может быть дано или аналитическим выражением, или условием, которое подает средство испытывать все числа и выбирать одно из них; или, наконец, зависимость может существовать и оставаться неизвестной… Обширный взгляд теории допускает существование зависимости только в том смысле, чтобы числа, одни с другими в связи, принимать как бы данными вместе”.

Еще до Лобачевского аналогичная точка зрения на понятие функции была высказана чешским математиком Б. Больцано. В 1837 г. немецкий математик П. ЛеженДирихле так сформулировал общее определение понятия функции: “у есть функция переменной х (на отрезке a £ х £ b), если каждому значению х (на этом отрезке) соответствует совершенно определенное значение у, причем безразлично, каким образом установлено это соответствие аналитической формулой, графиком, таблицей либо даже просто словами”.

Таким образом, примерно в середине XIX в. после длительной борьбы мнений понятие функции освободилось от уз аналитического выражения, от единовластия математической формулы. Главный упор в новом общем определении понятия функции делается на идею соответствия.

Во второй половине XIX в. после создания теории множеств в понятие функции, помимо идеи соответствия, была включена и идея множества. Таким образом, в полном своем объеме общее определение понятия функции формулируется следующим образом: если каждому элементу х множества А поставлен в соответствие некоторый определенный элемент у множества В, то говорят, что на множестве А задана функция у = f (х), или что множество А отображено на множество В. В первом случае элементы х множества А называют значениями аргумента, а элементы у множества В значениями функции; во втором случае х прообразы, у образы. В современном смысле рассматривают функции, определенные для множества значений х, которые, возможно, и не заполняют отрезка a £ x £ b, о котором говорится в определении Дирихле. Достаточно указать, например, на функциюфакториал y = n !, заданную на множестве натуральных чисел. Общее понятие функции применимо, конечно, не только к величинам и числам, но и к другим математическим объектам, например к геометрическим фигурам. При любом геометрическом преобразовании (отображении) мы имеем дело с функцией.

Общее определение функций по Дирихле сформировалось после длившихся целый век дискуссий в результате значительных открытий в физике и математике в XVIII и первой половине XIX в. Дальнейшее развитие математической науки в XIX в. основывалось на этом определении, ставшим классическим. Но уже с самого начала XX в. это определение стало вызывать некоторые сомнения среди части математиков. Еще важнее была критика физиков, натолкнувшихся на явления, потребовавшие более широкого взгляда на функцию. Необходимость дальнейшего расширения понятия функции стала особенно острой после выхода в свет в 1930 г. книги “Основы квантовой механики” Поля Дирака, крупнейшего английского физика, одного из основателя квантовой механики. Дирак ввел так называемую дельтафункцию, которая выходит далеко за рамки классического определения функции. В связи с этим советский математик Н. М. Гюнтер и другие ученые опубликовали в 3040х годах нашего столетия работы, в которых неизвестными являются не функции точки, а “функции области”, что лучше соответствует физической сущности явлений.

В общем виде понятие обобщенной функции было введено французом Лораном Шварцем. В 1936 г. 28летний советский математик и механик Сергей Львович Соболев первым рассмотрел частный случай обобщенной функции, включающей и дельтафункцию, и применил созданную теорию к решению ряда задач математической физики. Важный вклад в развитие теории обобщенных функций внесли ученики и последователи Л. Шварца И. М. Гельфанд, Г. Е. Шилов и другие.

Прослеживая исторический путь развития понятия функции невольно приходишь к мысли о том, что эволюция еще далеко не закончена и, вероятно, никогда не закончится, как никогда не закончится и эволюция математики в целом. Новые открытия и запросы естествознания и других наук приведут к новым расширениям понятия функции и других математических понятий. Математика незавершенная наука, она развивалась на протяжении тысячелетий, развивается в нашу эпоху и будет развиваться в дальнейшем.

Различные подходы к определению понятия функции.

Обоснование функциональной линии как ведущей для школьного курса математики — одно из крупнейших достижений современной методики. Однако реализация этого положения может быть проведена многими различными путями; многообразие путей вызвано фундаментальностью самого понятия функции.

Для того чтобы составить представление об этом многообразии, сравним две наиболее резко различающиеся методические трактовки этого понятия; первую мы назовем генетической, а вторую — логической.

Генетическая трактовка понятия функции основана на разработке и методическом освоении основных черт, вошедших в понятие функции до середины XIX в. Наиболее существенными понятиями, которые при этой трактовке входят в систему функциональных представлений, служат переменная величина, функциональная зависимость переменных величин, формула (выражающая одну переменную через некоторую комбинацию других переменных), декартова система координат на плоскости.

Генетическое развертывание понятия функции обладает рядом достоинств. В нем подчеркивается «динамический» характер понятия функциональной зависимости, легко выявляется модельный аспект понятия функции относительно изучения явлений природы. Такая трактовка естественно увязывается с остальным содержанием курса алгебры, поскольку большинство функций, используемых в нем, выражаются аналитически или таблично.

Генетическая трактовка понятия функции содержит также черты, которые следует рассматривать как ограничительные. Одним из очень существенных ограничений является то, что переменная при таком подходе всегда неявно (или даже явно) предполагается пробегающей непрерывный ряд числовых значений. Поэтому в значительной степени понятие связывается только с числовыми функциями одного числового аргумента (определенными на числовых промежутках). В обучении приходится, используя и развивая функциональные представления, постоянно выходить за пределы его первоначального описания.

Логическая трактовка понятия функции исходит из положения о том, что строить обучение функциональным представлениям следует на основе методического анализа понятия функции в рамках понятия алгебраической системы. Функция при таком подходе выступает в виде отношения специального вида между двумя множествами, удовлетворяющего условию функциональности. Начальным этапом изучения понятия функции становится вывод его из понятия отношения.

Реализация логического подхода вызывает необходимость иллюстрировать понятие функции при помощи разнообразных средств; язык школьной математики при этом обогащается. Помимо формул и таблиц, здесь находят свое место задание функции стрелками, перечислением пар, использование не только числового, но и геометрического материала; геометрическое преоб

Учебная работа № 1589. Изучение функций в курсе математики VIIVIII классов