Учебная работа № 1580. Новые фундаментальные физические константы

Учебная работа № 1580. Новые фундаментальные физические константы

Аннотация

Получены новые физические константы hu , Gu , Ru ,tu , lu , относящиеся к физическому вакууму:

Проведенные исследования этих констант показали, что используемые в современной физике фундаментальные физические константы непосредственно происходят от перечисленных выше констант вакуума [5 15]. Установлено, что современные фундаментальные физические постоянные имеют вторичный статус по отношению к найденным константам и представляют собой различные комбинации констант hu , tu , lu и чиселπ и α. Константам, входящим в (hu ,tu ,lu ,π,α )базис, определен специальный статус – они определены как универсальные суперконстанты [6, 8, 13, 15]. На основе универсальных суперконстант получено новое значение гравитационной постоянной Ньютона, планковских констант и найдена универсальная формула силы. Новые фундаментальные физические константы дают широкие возможности для установления новых физических законов и поиска констант взаимодействия в различных физических законах.

ВВЕДЕНИЕ

Физика входит в 21й век с большим клубком нерешенных проблем. Если в конце 19го века в физике было «все благополучно»за исключением отрицательных результатов опыта Майкельсона и непонятнойзависимости излучения абсолютно черного тела от температуры, то к концу 20говека физика накопила невиданное количество нерешенных проблем. Наиболее важныеиз них можно найти в недавноопубликованном В.Л.Гинзбургом списке 1999 года[4].

Если только две проблемы конца 19го века привели к радикальному изменениюситуации в физике, то клубок нерешенных проблем конца 20го века способенпривести к обвальному пересмотру понимания устройства мира, за которым можетпоследовать перекраивание сложившейся научнойкартины мира. Обилие неудачных попыток всоздании новых физических теорий говорит о том, что правильное стратегическоенаправление исследований до сих пор не выявлено.Cреди нерешенных фундаментальных проблемеще не обозначена та важнейшая проблема,решение которой даст ключ к решению других проблем. Усилия ученыхнаправлены как на теоретические, так и на экспериментальныеисследования. Поиск новых подходов активно проводится в области исследования новых физических полей наоснове концепции физического вакуума .Для описания новых видов полей иновых взаимодействий необходимо проводить поиск констант взаимодействий.Весьма вероятно, чтоэто должны быть новые еще неизвестные физике константы.

В настоящей работе затронута проблема, которая, на мой взгляд, незаслуженновыпала из поля зрения физиков и до сих пор небыла обозначена в числе важнейших фундаментальных проблем. Я имею в видупроблему фундаментальных физическихконстант. Она должна стоять на первомместе, поскольку именно в ней содержится ключ к решению других проблем физики.Как будет показано ниже на некоторых примерах, эта проблема действительноявляется ключевой, а ее решение открывает большие возможности для поиска новыхфизических законов и новых физических констант.

1. ПРОБЛЕМА ФУНДАМЕНТАЛЬНЫХ ФИЗИЧЕСКИХ КОНСТАНТ

Проблема фундаментальных физических констант естественным образом возникла наоснове большого количества накопленных результатов исследований в области физикиэлементарных частиц. Благодаря этому направлению исследований появилось большоеколичество новых фундаментальных физическихпостоянных, которые уже выделены в отдельный класс “атомные и ядерные константы” [1]. Следует отметить,что их количество уже намного превышает количество всех других констант вместевзятых [1]. В общей сложности в физике используются уже сотни физическихконстант. Список фундаментальных физических констант рекомендованный CODATA 1998насчитывает около 300 фундаментальных физических констант [1]. То , чтоколичество констант достигло уже нескольких сотен, и все они фундаментальные – явно ненормально. Если кним подходить как к истинно фундаментальным, то их слишком много. Если исходитьиз того, что в основе мира лежит единая сущность, и что механические,электрические и гравитационные явления должны иметь единую природу, то дляописания всех физических явлений и законов не нужно такое большое количествоконстант. Если же подходить к понятию фундаментальности по полной мере, тоистинной фундаментальностью должны обладать совсем минимальное количествоконстант, а никак не сотни. Таким образом,существует большое противоречие между минимально необходимым количествомфундаментальных констант и их реальным обилием.

Можно предположить, что известные на сегодня константы являются составнымиконстантами и статус фундаментальных они носят лишь в силу историческихособенностей их появления. Тогда возникают вопросы: «из каких новых неприводимыхконстант они могут состоять и как они связаны между собой?”. Если такие первичные константы существуют, то онимогли бы претендовать на роль фундаментальных физических суперконстант изаменить собой существующие константы. Существуют ли такие суперконстанты,которые в состоянии заменить такое большое количество столь различныхфундаментальных физических констант и сколько их? На эти вопросы в рамкахсовременных знаний ответов пока нет.

Наиболее важные современные физические теории оперируют константамиG, h,c в их различных комбинациях [3]. Так, например, теорию тяготения Ньютонаможно условно назватьG теорией [3]. Общая теория относительностиявляется классической (G, c )теорией. Релятивистская квантовая теорияполя является квантовой (h, c )теорией [3]. Каждая из этих теорийоперирует одной или двумя размерными константами. Открытие планковских единицдлины, массы и временипородили надежду на возможность создания новой квантовойтеории на основе трех констант. Однако, попытки создать единую теориюэлектромагнитных полей, частиц и гравитации на основе трех размерных констант (G, c, h )теорию, окончились неудачей. Такой теории до сих пор нет, хотяна ее появление возлагали большие надежды [3]. На (G, c, h )базис все еще возлагают надежды какна основополагающую тройку констант для будущей теории. И действительно,многое

указывает на то, что трех размерных констант должно быть достаточно длясоздания единой теории. Ведь неспроста толькоиз трех основных единиц метра, килограмма и секунды можно получить всепроизводные единицы, имеющие механическую природу. Однако до сих пор неясно,какие три константы должны составить основу будущей непротиворечивой теории?Задача эта оказалась очень сложной. Я считаю,что причины сложности кроются в невыясненной сущности многих фундаментальныхконстант и вневыясненных истоках их происхождения. Проведенные исследования [5 –15 ]позволяют сказать, что минимальное количество первичных констант, из которыхсостоят современные фундаментальные физические константы, действительносуществует. При этом в минимальный константный базис входят как уже известныефизические постоянные, так и новые константы.

2.КОНСТАНТЫ ФИЗИЧЕСКОГО ВАКУУМА

При исследовании свойств физического вакуума, из соотношения для плотностиэнергии получена следующая формула для полной энергии, заключенной вдинамическом объекте вакуума

E = q2 νπc •107 /2. (1)

Это соотношение напоминает посвоему виду формулу ПланкаE= h•ν. Только роль квантадействия выполняет в ней не постоянная Планка, а новая константа:

hu =e2 •с•μv , (2)

где:μv –магнитнаяконстанта вакуума.

Новаяфизическая константа названа фундаментальным квантом действия [6 – 10, 13 15].Ее значение равно [6]:

Из формулы для фундаментального кванта действия (2) следуют еще две новыефизические константы:

Gu =hu /c, (3)

Ru =hu /e2 . (4)

Значение константыGu равно [6]:

КонстантаRu получила название фундаментальный квант сопротивления[6].Ее значение равно [6]:

Эти три константыhu ,Gu ,Ru являются основными константамивакуума. Примечательным является то, что они непосредственно следуют изнепрерывного поля Максвелла [5, 12, 15].

С константой вакуумаG u связан новыйдинамический закон, свойственный физическому вакууму.Этот закон имеет вид [6]:

mэ • l = Gu , (5)

где:mэ –электромагнитная масса,l – метрическая характеристика.

Из динамического закона следует, что электромагнитная масса принимаетзначения от некоторого минимального значения донекоторой предельной величины:

mmin <mэ <mmax.

Это приводит к тому, что метрическая характеристика изменяется от некоторогомаксимального значения до некоторой предельнойвеличины:

lmin < l<lmax

Уравнение (5) представляет собой динамический закон, который отображаетдинамическую симметрию вакуума.D инвариантность вакуумаявляется новым видом симметрии и отражает наиболее фундаментальное свойство Природы. СD инвариантностью вакуума связан важнейший закон сохранения,который не нарушается при всех видах взаимодействий.

D инвариантность вакуумаявляется симметрией более высокого порядка, чем известные на сегодня симметрии.Нарушения симметрии, которые наблюдаются в Природе, вплоть до несохраненияСРинвариантности, не затрагиваютD инвариантность вакуума. ГраницейD инвариантности являются фундаментальные константыm e иlu , что и отражаетдинамический закон вакуума. Таким образом, динамическая симетрия вакуума непротиворечит идее развития, поскольку D инвариантность сохраняется и тогда, когда нарушаются другиевиды симметрии. В вакууме реализуется реальный физический процесс, обязанныйсвоим существованием динамической симметрии, который приводит к появлениюдискретных частиц из непрерывного физического объекта, что в математическомописании представлено как достижение физическими величинами своих предельныхквантованных значений[514].

Из соотношений (2) и (4) следует, что:

Ru =сμv, (6)

где:μv –магнитная константа вакуума .

Из формулы для фундаментального кванта действия (2) следует новая формула для элементарного зарядаe :

e=±√(hu /cμv ). (7)

В системеСГСЭ соотношение для элементарного заряда примет вид:

e=±√(hu c). (8)

Соотношения (7) и(8) представлены квадратным корнем. Из них непосредственно следует бинарностьзарядов, т. е. то, что заряды имеют два знака. Поскольку заряды определяютсятолько константами, то из этих соотношений следует также и квантованность зарядов.

Рассмотривая динамикуневещественных объектов вакуума, легко видеть, что первым фиксированнымзначением энергии, которая соответствует устойчивому физическому объекту,является энергия электрона или позитронаEe . Тогда значение частоты, которое соответствует этой величине энергиибудет равно:

ν=Ee /hu = 1,063870869•1023 Гц.

Отсюда следуетчетвертая физическая константа вакуума – фундаментальный квант времени:

Используя константу скорости светас, получим пятую константу вакуума – фундаментальный квант длины:

Отметим, чтозначение этой константы в точности совпадает с классическим радиусом электрона.Все пять констант вакуумаhu ,Gu ,Ru ,tu ,lu получены на основе новогоподхода к пониманию физической сущности полевых структур. Проведенныеисследования этих констант показали, чтоиспользуемые в современной физике фундаментальные физические константынепосредственно происходят от констант физического вакуума [6 8, 14].Приведенные выше основные константы вакуума позволяют получить ряд вторичныхконстант, которые являются производными константами и также относятся кфизическому вакууму.

Константы фундаментальной метрикиtu иlu образуют новую константуb, названную фундаментальнымускорением[5]:

b=lu /tu 2 .

Значение этой константы равно:

Эта константа позволила получить новый закон силыF=mb [6,8, 10, 15]. Этот закон отражает связь силы с дефектом массы.

Исследования констант вакуума привели к выводу, что для динамических объектоввакуума можно определить константу магнитного момента. Такой магнитный моментбыл найден в[6]. Он получил название фундаментальный магнетонвакуума. Приводим соотношение для фундаментального магнетона вакуума:

μu = lu (hu c )1/2 /2π .

Значение этой константы равно:

Фундаментальный магнетон μu и магнетон БораμB связаны между собой следующимсоотношением:

μuB α/π.

3. УНИВЕРСАЛЬНЫЕ СУПЕРКОНСТАНТЫ

В [6, 8 10] получены новые результаты, показывающие, что группа константвакуумаhu ,tu ,lu совместно с числамиπ иα, обладает уникальной особенностью. Эта особенность состоит в том, чтоиспользуемые в физике фундаментальные константы представляют собой различныекомбинации перечисленных констант. Таким образом, названные константы вакуумаимеют первичный статус и могут выполнять роль онтологического базиса физическихконстант. Константы, входящие в (h

Учебная работа № 1580. Новые фундаментальные физические константы

Яндекс.Метрика