Учебная работа № 1478. Аппроксимация функций

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (6 оценок, среднее: 4,67 из 5)
Загрузка...
Контрольные рефераты

Учебная работа № 1478. Аппроксимация функций

Из курса математики известны 3 способа задания функциональных зависимостей:

1) аналитический

2) графический

3) табличный

Табличный способ обычно возникает в результате эксперемента.

Недостаток табличного задания функции заключается в том, что найдутся значения переменных которые неопределены таблицей. Для отыскания таких значений определяют приближающуюся к заданной функцию, называемой аппроксмирующей, а действие замены аппроксимацией.

φ(х)

Аппроксимация заключается в том, что используя имеющуюся информацию по f(x) можно рассмотреть другую функцию φ(ч) близкую в некотором смысле к f(x), позволяющую выполнить над ней соответствующие операции и получить оценку погрешность такой замены.

φ(х) аппроксимирующая функция.

Интерполяция (частный случай аппроксимации)

Если для табличной функции y=f(x), имеющей значение x0 f(x0 ) требуется построить аппроксимирующюю функцию j(x) совпадающую в узлах с xi c заданной, то такой способ называется интерполяцией

При интерполяции, заданная функция f(x) очень часто аппроксимируется с помощью многочлена, имеющего общий вид

j(x)=pn (x)=an xn +an1 xn1 +…+a0

В данном многочлене необходимо найти коэффициенты an ,an1 , …a0 , так как задачей является интерполирование, то определение коэффициентов необходимо выполнить из условия равенства:

Pn (xi )=yi i=0,1,…n

Для определения коэффициентов применяют интерполяционные многочлены специального вида, к ним относится и полином Лагранжа Ln (x).

i¹j

В точках отличных от узлов интерполяции полином Лагранжа в общем случае не совпадает с заданной функцией .

Задание

С помощью интерполяционного полинома Лагранжа вычислить значение функции y в точке xc , узлы интерполяции расположены равномерно с шагом Dх=4,1 начиная с точки х0 =1,3 даны значения функции y={6.56,3.77,1.84,0.1,2.29,4.31,5.86,8.82,11.33,11.27}.

ГСА для данного метода

CLS

DIM Y(9)

DATA 6.56,3.77,1.84,0.1,2.29,4.31,5.86,8.82,11.33,11.27

X0 = 1.3: H = 4.1: N = 10: XC = 10

FOR I = 0 TO N 1

1 X(I) = X0 + H * I

READ Y(I)

PRINT Y(I); X(I)

NEXT I

S1 = 0: S2 = 0: S3 = 0: S4 = 0

FOR I = 0 TO N 1

2 S1 = S1 + X(I) ^ 2

S2 = S2 + X(I)

S3 = S3 + X(I) * Y(I)

S4 = S4 + Y(I)

NEXT I

D = S1 * N S2 ^ 2

D1 = S3 * N S4 * S2

D0 = S1 * S4 S3 * S2

A1 = D1 / D: A0 = D0 / D

YC = A1 * XC + A0

PRINT «A0=»; A0, «A1=»; A1, «YC=»; YC

FOR X = 0 TO 50 STEP 10

Y = A1 * X + A0

PRINT X, Y

NEXT X

END

XC= 10

Х Y

1.3 6.56

5.4 3.77

9.5 1.84

13.6 .1

17.7 2.29

21.8 4.31

25.9 5.86

30 8.82

34.1 11.33

38.2 11.27

S=1.594203

АППРОКСИМАЦИЯ ФУНКЦИЕЙ. МЕТОД НАИМЕНЬШИХ КВАДРАТОВ.

В инженерной деятельности часто возникает необходимость описать в виде функциональной зависимости связь между величинами, заданными таблично или в виде набора точек с координатами (xi ,yi ), i=0,1,2,…n, где n общее количество точек. Как правило, эти табличные данные получены экспериментально и имеют погрешности. При аппроксимации желательно получить относительно простую функциональную зависимость (например, полином), которая позволила бы «сгладить» экспериментальные погрешности, получить промежуточные и экстраполяционные значения функций, изначально не содержащиеся в исходной табличной информации.

Графическая интерпретация аппроксимации.

Эта функциональная (аналитическая) зависимость должна с достаточной точностью соответствовать исходной табличной зависимости. Критерием точности или достаточно «хорошего» приближения могут служить несколько условий.

Обозначим через fi значение, вычисленное из функциональной зависимости для x=xi и сопоставляемое с yi .

Одно из условий согласования можно записать как

S = (fi yi )  min ,

т.е. сумма отклонений табличных и функциональных значений для одинаковых x=xi должна быть минимальной (метод средних). Отклонения могут иметь разные знаки, поэтому достаточная точность в ряде случаев не достигается.

Использование критерияS = |fi yi |  min , также не приемлемо, т.к. абсолютное значение не имеет производной в точке минимума.

Учитывая вышеизложенное, используют критерийнаименьших квадратов , т.е. определяют такую функциональную зависимость, при которой
S = (fi yi )2 , (1)

обращается в минимум.

В качестве функциональной зависимости рассмотрим многочлен

f(x)=C0 +C1 X+C2 X2 +…+CM XM . (2)

Формула (1) примет вид S = ( C0 +C1 Xi +C2 Xi 2 +…+CM Xi M Yi ) 2

Условия минимума S можно записать, приравнивая нулю частные производные S по независимым переменным С0, С1 ,…СМ :

SC0 = 2 ( C0 +C1 Xi +C2 Xi 2 +…+CM Xi M Yi ) = 0 ,

SC1 = 2 ( C0 +C1 Xi +C2 Xi 2 +…+CM Xi M yi ) Xi = 0 , (3)

SCM = 2 ( C0 +C1 Xi +C2 Xi 2 +…+CM Xi M Yi ) Xi M = 0 ,

Тогда из (3) можно получитьсистему нормальных уравнений

C0 (N+1) + C1 Xi +C2 Xi 2 +…+ CM Xi M = Yi ,

C0 Xi +C1 Xi 2 +C2 Xi 3 +…+ CM Xi M+1 = Yi Xi , (4)

C0 Xi M +C1 Xi M+1 +C2 Xi M+2 +…+ CM Xi 2M = Yi Xi M .

Для определения коэффициентов Сi и, следовательно, искомой зависимости (2) необходимо вычислить суммы и решить систему уравнений (4). Матрица системы (4) называется матрицей Грама и является симметричной и положительно определенной. Эти полезные свойства используются при ее решении.

(N+1) Xi Xi 2 Xi M Yi
Xi Xi 2 Xi 3 Xi M+1 Yi Xi
Xi M Xi M+1 Xi M+2 Xi 2M Yi Xi M

Нетрудно видеть, что для формирования расширенной матрицы (4а) достаточно вычислить только элементы первой строки и двух последних столбцов, остальные элементы не являются «оригинальными» и заполняются с помощью циклического присвоения.

Задание

Найти коэффициенты прямой и определить значение функции y{6.56,3.77, 1.84,0.1,2.29,4.31,5.56,8.82,11.33,11.27}, x0=1.3 h=4.1, и определить интеграл заданной функции.

Программа

¦CLS

¦XC = 10: X0 = 1.3: H = 4.1: N = 10

¦DIM Y(9): DIM X(9)

¦DATA 6.56,3.77,1.84,0.1,2.29,4.31,5.86,8.82,11.33,11.27

¦FOR I = 0 TO N 1

¦X = X0 + H * I:

¦X(I) = X

¦READ Y(I)

¦PRINT X(I), Y(I)

¦NEXT I

¦S1 = 0: S2 = 0: S3 = 0: S4 = 0

¦I = 0

¦10 S1 = S1 + X(I) ^ 2:

¦S2 = S2 + X(I):

¦S3 = S3 + X(I) * Y(I):

¦S4 = S4 + Y(I)

¦I = I + 1

¦IF I <= N 1 THEN 10

¦D = S1 * N S2 ^ 2:

¦D1 = S3 * N S2 * S4:

¦D0 = S1 * S4 S2 * S3

¦A1 = D1 / D:

¦A0 = D0 / D

¦Y = A1 * XC + A0

¦PRINT TAB(2); «КОЭФФИЦИЕНТ ПРЯМОЙ В ТОЧКЕ A0=»; A0,

¦PRINT TAB(2); «КОЭФФИЦИЕНТ ПРЯМОЙ В ТОЧКЕ A1=»; A1,

¦PRINT TAB(2); «ЗНАЧЕНИЕ ФУНКЦИИ В ТОЧКЕ XC Y=»; Y

¦FOR X = 10 TO 50 STEP 10

¦Y = A1 * X + AO

¦PRINT X, Y

¦NEXT X

¦FOR I = 1 TO N 1

¦S = S + Y(I): NEXT I

¦D = H / 2 * (Y(0) + Y(N 1) + 2 * S)

¦PRINT «ЗНАЧЕНИЕ ИНТЕГРАЛА ПО МЕТОДУ ТРАПЕЦИИ D=»; D

Ответы

Х Y

1.3 6.56

5.4 3.77

9.5 1.84

13.6 .1

17.7 2.29

21.8 4.31

25.9 5.86

30 8.82

34.1 11.33

38.2 11.27

КОЭФФИЦИЕНТ ПРЯМОЙ В ТОЧКЕ A0=6.709182

КОЭФФИЦИЕНТ ПРЯМОЙ В ТОЧКЕ A1= .5007687

ЗНАЧЕНИЕ ФУНКЦИИ В ТОЧКЕ XC Y=1.701495

10 5.007687

20 10.01537

ЗНАЧЕНИЕ ИНТЕГРАЛА ПО МЕТОДУ ТРАПЕЦИИ D= 166.9725

Учебная работа № 1478. Аппроксимация функций