Учебная работа № 1415. Теория устойчивости

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (6 оценок, среднее: 4,67 из 5)
Загрузка...
Контрольные рефераты

Учебная работа № 1415. Теория устойчивости

4. Критерий устойчивости Михайлова.

Частотные критерии устойчивости получили наиболее широкое практическое применение, так как, вопервых, они позволяют судить об устойчивости замкнутой системы по более простой передаточной функции системы W ( s ) ; вовторых, анализ устойчивости можно выполнять и по экспериментально определенным частотным характеристикам; втретьих, с помощью частотных характеристик можно судить и о качестве переходных процессов в системе.

А.В. Михайлов первым предложил использовать развитые в радиотехнике Найквистом частотные методы для анализа устойчивости линейных систем регулирования. Сформулированным им в 1938 г. критерий устойчивости назвали его именем. Рассмотрим существо этого критерия.

Пусть характеристическое уравнение замкнутой системы имеет вид

D ( l ) = l n + a1 l n1 + a2 l n2 + … + an = 0. (13)

Зная его корни l 1 , l 2 , … , l n , характеристический многочлен для уравнения (13) запишем в виде

D ( l ) = ( l l 1 ) ( l l 2 ) … ( l l n ). (14)

Im Im

0 Re 0 Re

а) б)

Рис.12. Векторное изображение сомножителей характеристического уравнения замкнутой системы на плоскости :

а для двух корней l и l i ;

б для четырех корней l 1 , l1 , l 2 , l2

Графически каждый комплексный корень l можно представить точкой на плоскости. Поэтому, в свою очередь, каждый из сомножителей уравнения (14) можно представить в виде разности двух векторов ( l l i ), как это показано на рис.12,а. Положим теперь, что l = j w ; тогда определяющей является точка w на мнимой оси (рис.12,б). При изменении w от Ґ до + Ґ векторы j w l 1 и j w l1 комплексных корней l и l1 повернуться против часовой стрелки, и приращение их аргумента равно + p , а векторы j w l 2 и j w l2 повернутся по часовой стрелке, и приращение их аргумента равно p . Таким образом, приращение аргумента arg( j w l i ) для корня характеристического уравнения l i , находящегося в левой полуплоскости, составит + p , а для корня, находящегося в правой полуплоскости, p . Приращение результирующего аргумента D arg D( j w ) равно сумме приращений аргументов его отдельных сомножителей. Если сре1ди n корней характеристического уравнения m лежит в правой полуплоскости, то приращение аргумента составит

D arg D( j w ) = ( n m ) p m p = ( n 2m ) p . (15)

Ґ < w < Ґ для левой для правой

полуплоскости полуплоскости

Отметим теперь, что действительная часть многочлена

D ( j w ) = ( j w )n + a1 ( j w )n1 + a2 ( j w )n2 + … + an (16)

содержит лишь четные степени w , а мнимая его часть только нечетные, поэтому

arg D ( j w ) = arg D ( j w ), (17)

и можно рассматривать изменение частоты только на интервале w от 0 до Ґ . В этом случае приращение аргумента годографа характеристического многочлена

D arg D( j w ) = ( n 2m ) p / 2 . (18)

0 Ј w < Ґ

Если система устойчива, то параметр m = 0, и из условия (18) следует, что приращение аргумента

D arg D( j w ) = n p / 2 . (19)

0 Ј w < Ґ

На основании полученного выражения сформулируем частотный критерий устойчивости Михайлова: для того чтобы замкнутая система автоматического регулирования была устойчива, необходимо и достаточно, чтобы годограф характеристического многочлена в замкнутой системе (годограф Михайлова) начинался на положительной части действительной оси и проходил последовательно в положительном направлении, не попадая в начало координат, n квадрантов комплексной плоскости ( здесь n порядок характеристического уравнения системы).

j V’ j V’

0 U’ 0 U’

а) б)

Рис.13. Примеры годографов Михайлова для различных характеристических уравнений замкнутых систем:

а устойчивые системы при n = 1 6 ; б неустойчивые системы при n = 4 и различных параметрах

Соответствующие устойчивым системам годографы Михайлова для уравнений различных порядков построены на рис. 13,а. На рис. 13,б построены годографы Михайлова для неустойчивых систем при n = 4.

Одной из основных задач теории автоматического регулирования является изучение динамических процессов, происходящих в автоматических системах. Автоматические системы при нормальной эксплуатации должны поддерживать определенный режим работы объекта регулирования при действии на него многих возмущающих факторов. Такое поведение может быть достигнуто лишь в системах автоматического регулирования, обладающих устойчивостью по отношению к этим воздействиям. Устойчивость системы означает, что малое изменение входного сигнала или какогонибудь возмущения, начальных условий или параметров не приведут к значительным отконениям выходного сигнала. Это определение раскрывает физический смысл понятия устойчивости.

Теория устойчивости, основоположниками которой являются великий русский ученый А.М. Ляпунов и великий французский ученый А.Пуанкаре, представляет собой важный раздел прикладной математики. Создателями современной теории устойчивости являются русские ученые Н.Г. Четаев, Е.А. Барбашин, Н.П. Еругин, Н.Н. Красовский.

1. Понятие устойчивости, асимптотической устойчивости и неустойчивости по Ляпунову.

Рассмотрим задачу Коши для нормальной системы дифференциальных уравнений

x’ = f ( t , x )

(1)

с начальными условиями x ( t0 ) = x0 (2)

где x = ( x1, x2, … , xn ) n мерный вектор; t О I = [t0, + Ґ [ независимая переменная, по которой производится дифференцирование;

f ( t, x ) = ( f1 ( t , x ) , f2 ( t , x ) , … , fn ( t , x ) ) n мерная вектор функция.

Комментарии к задаче Коши (1), (2). Для простоты восприятия эту задачу можно сначала трактовать как задачу Коши для скалярного дифференциального уравнения первого порядка вида x’= f ( t , x ) с начальным условием x ( t0 ) = x0. С целью упрощения все рисунки п. 10 ,если нет специальных оговорок, приводится для случая n = 1.

x

0 t

Рис.1

Так как задача теории устойчивости впервые возникла в механике, то переменную t принято интерпретировать как время, а искомую векторфункцию x ( t ) как движение точки в зависимости от времени в пространстве Rn+1 (рис.1)

Пусть задача Коши (1), (2) удовлетворяет условиям теоремы существования и единственности. Тогда через каждую точку ( t0 , x0 ) области единственности решений проходит только одна интегральная кривая. Если начальные данные ( t0 , x0 ) изменяются, то изменяется и решение. Тот факт, что решение зависит от начальных данных, обозначается следующим образом: x ( t ) = x ( t ; t0 , x0 ). Изменение этого решения в данной математической модели с изменением начальных данных ( t0 , x0 ) приводят к существенному изменению решения x ( t ; t0 , x0 ) , приводит к тому, что такой моделью нельзя пользоваться, поскольку начальные данные ( t0 , x0 ) получаются из опыта, а изменения не могут быть абсолютно точными. Естественно, что в качестве математической модели пригодна лишь та задача Коши, которая устойчива к малым изменениям начальных данных.

Определим понятие устойчивости, асимптотической устойчивости и неустойчивости в смысле Ляпунова. Для этого отклоение решения x ( t ) = x ( t ; t0 , x0 ) , вызванное отклонением D x0 начального значения x0 , будем записывать следующим образом:

| x ( t ; t0 , x0 + D x0 ) x ( t ) | = | x ( t ; t0 , x0 + D x0 ) x ( t ; t0 , x0 ) |.

Определение 1. Решение x ( t ) = x ( t ; t0 , x0 ) системы (1) называется устойчивым по Ляпунову в положительном направлении (или устойчивым), если оно непрерывно по x0 на интервале I = = [ t0, + Ґ [ , т.е. « e > 0 $ d > 0 такое, что « D x0

| D x0 | Ј d Ю | x ( t ; t0 , x0 + D x0 ) x ( t ) | Ј e « t і t0.

Если, кроме того, отклонение решения x ( t ) стремится к нулю при t ® + Ґ для достаточно малых D x0 , т.е. $ D > 0 « D x0.

| D x0 | Ј D Ю | x ( t ; t0 , x0 + D x0 ) x ( t ) | ® 0 , t ® + Ґ . (3)

то решение x ( t ) системы (1) называется асимптотически устойчивым в положительном направлении (или асимптотически устойчивым).

Аналогично определяются различные типы устойчивости решения в отрицательном направлении.

Комментарий к определению 1. 1) Геометрически устойчивость по Ляпунову решение х ( t ) можно интерпритировать следующим образом ( рис.1 ) : все решения x ( t ; t0 , x0 + D x0 ) , близкие в начальный момент t0 к решению x ( t ) (т.е. начинающиеся в пределах d трубки ) , не выходят за пределы e трубки при всех значениях t і t0 .

x

0 t

Рис.2

2) Асимптотическая устойчивость есть устойчивость с дополнительным условием (3) : любое решение x1 ( t ) , начинающееся в момент t0 в D трубке, с течением времени неограниченно приближается к решению x ( t ) (рис.2). Трубка радиуса D называется областью притяжения решения x ( t ). Решение x2 ( t ), начинающееся при t = t0 за пределами области притяжения, но в пределах d трубки, не покидает e трубку, хотя может и не приближаться к решению x(t).

Определение 2. Решение x ( t ) = x ( t ; t0 , x0 ) системы (1) называется неустойчивып по Ляпунову в положительном направлении (или неустойчивым), если оно не является устойчивым в положительном направлении.

Аналогично определяется неустойчивость в отрицательном направлении.

Комментарий к определению 2. Геометрически неустойчивость по Ляпунову означает, что среди решений, близких в начальный момент t0 к решению х ( t ) , найдется хотя бы одно, которое в некоторый момент t1 ( свой для каждого такого решения) выйдет за пределы e трубки (рис.3).

Приведем примеры из механики, иллюстрирующие определения различных типов устойчивости для одномерного случая, т.е. n = 1.

Рассмотрим маятник, состоящий из точечной массы m, укрепленной на невесомом стержне длиной l (рис.4). Выведем маятник из состояния I, отклонив стержень на угол a ; тогда, как известно из опыта, он будет стремиться занять вновь положение I. Если пренебречь сопротивлением окружающей среды, то маятник будет колебаться возле положения I сколь угодно долго с амплитудой, равной начальному отклонению, это модель устойчивого положения равновесия. Если же учитывать сопротивление окружающей среды, то амплитуда колебаний маятника будет уменьшаться и в итоге он снова займет положение I это модель асимптотически устойчивого положения равновесия. Если маятник находится в положении II, то малейшее его смещение приведет к удалению маятника от состояния II это модель не устойчивого положения равновесия.

x

0 t

Рис.3 Рис.4

Исследование устойчивости произвольного решения x ( t ) системы (1) всегда можно свести к исследованию устойчивости нулевого решения некоторой преобразованной системы. Действительно, в системе (1) произведем подстановку y ( t ) = x x (t). Тогда получим систему