Учебная работа № 1353. Геометрия в пространстве

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (6 оценок, среднее: 4,67 из 5)
Загрузка...
Контрольные рефераты

Учебная работа № 1353. Геометрия в пространстве

.

В своей деятельности человеку повсюду приходится сталкиваться с необходимостью изучать форму, размеры, взаимное расположение пространственных фигур. Подобные задачи решают и астрономы, имеющие дело с самыми большими масштабами, и физики, исследующие структуру атомов и молекул. Раздел геометрии, в котором изучаются такие задачи, называется стереометрией (от греческого «стереос» объемный, пространственный).

Может показаться парадоксальным, но фактически понятие «плоскость» в планиметрии геометрии на плоскости не нужно. Ведь если мы, например, говорим, что в плоскости многоугольника дана точка, мы тем самым подразумеваем, что такие точки существуют и вне этой плоскости. В планиметрии такое предположение излишние: все происходит в одной и той же единственной плоскости. В стереометрии нам приходится иметь дело уже с несколькими плоскостями. В каждой из них сохраняют свою силу все известные из планиметрии определения и теоремы, относящиеся к точкам, прямым, расстояниям и т.д., но свойства самих плоскостей необходимо описывать отдельно.

План.

I. Основные аксиомы стереометрии 4 II . Прямые, плоскости, параллельность 6

III . Изображение пространственных фигур 7 IV . Перпендикулярность. Углы. Расстояния 12 V . Несколько задач на построение, воображение, изображение и соображение 17

I.Основные аксиомы стереометрии

Итак, в стереометрии к основным понятиям планиметрии добавляется еще одно плоскость, а вместе с ним аксиомы, регулирующие «взаимоотношения» плоскостей с другими объектами геометрии. Таких аксиом три.

Первая аксиома выхода в пространство придает «театру геометрических действий» новое, третье измерение:

· Имеется четыре точки, не лежащие в одной плоскости (рис. 1)

Рис. 1

Таким образом, не все точки находятся в одной плоскости. Но этого недостаточно. Нужно, чтобы различных плоскостей было бесконечно много. Это обеспечивается второй аксиомой аксиомой плоскости :

· Через любые три точки проходит плоскость.

С третьей аксиомой мы сталкиваемся, когда складываем фигурки из бумаги: все знают, что, образующиеся при этом линии сгиба прямые.

Аксиома пересечения плоскостей звучит так:

·

Рис. 2

Если две плоскости имеют общую точку, то их пересечение есть прямая.

· (рис.2)

Отсюда следует: если три точки лежат на одной прямой, то проходящая через них плоскость единственная.

Действительно, если через какие то три точки проходят две разные плоскости, то через эти точки можно провести прямую, а именно прямую, по которой плоскости пересекаются. Отметим, что последнее свойство само нередко включается в аксиомы.

Третья аксиома играет очень существенную и неочевидную с первого взгляда роль в стереометрии: она делает пространство в точности трехмерным, потому что в пространствах размерности четыре и выше плоскости могут пересекаться по одной точке. К трем указанным так же присоединяются планометрические аксиомы, переосмысленные и подправленные с учетом того, что теперь мы имеем дело не с одной, а с несколькими плоскостями. Например, аксиому прямой через две различные точки можно провести одну и только одну прямую переносят в стереометрию дословно, но только она уже распространяется на две точки пространства.

В качестве следствия выведем прямо из аксиом одно полезное следствие: прямая, имеющая с плоскостью хотя бы две общие точки, целиком лежит в этой плоскости.

β
α
Рис. 3
B
A
.
.
.C
l

Пусть прямая l проходит через точки А и В плоскости α (рис. 3). Вне плоскости α есть хотя бы одна точка С (по аксиоме выхода в пространство). В соответствии с аксиомой плоскости через А ,В и С можно провести плоскостьβ . Она отлична от плоскости α , так как содержит С и имеет с α две общие точки. Значит,β пересекается сα по прямой, которой, как и l , принадлежат А , В . По аксиоме прямой, линия пересечения плоскостей совпадает с l . Но эта линия лежит в плоскости α , что и требовалось доказать.

Путем несложных доказательств мы находим, что:

· На каждой плоскости выполняются все утверждения планиметрии.

II . Прямые, плоскости, параллельность.

Уже такое основное понятие, как параллель­ность прямых, нуждается в новом определении:

две прямые в пространстве называются параллельнылт, если они лежат в одной плоскости и не имеют общих точек. Так что не попадай­тесь в одну из излюбленных экзаменаторами ловушек — не пытайтесь «доказывать», что через две параллельные прямые можно про­вести плоскость: это верно по определению параллельности прямых! Знаменитую плани­метрическую аксиому о единственности парал­лельной включают и в аксиомы стереометрии, а с её помощью доказывают главное свойство параллельных прямых в пространстве:

· Через точку, не лежащую на прямой, можно провести одну и только одну прямую параллельно данной.

Сохраняется и другое важное свойство па­раллельных прямых, называемое транзитив­ностью параллельности:

· Если две прямые а и b параллельны третьей прямой с, то они параллель­ны друг другу.

Но доказать это свойство в стереометрии сложнее. На плоскости непараллельные прямые обязаны пересекаться и потому не могут быть одновременно параллельны третьей (иначе нарушается аксиома параллельных). В про­странстве существуют непараллельные и при­том непересекающиеся прямые — если они лежат в разных плоскостях. О таких прямых говорят, что они скрещиваются.

D
А

На рис. 4 изображён куб; прямые АВ и ВС пересекаются, АВ и CD — параллельны, а АВ и В¹С¹ — скрещиваются. В дальнейшем мы часто будем прибегать к помощи куба, чтобы иллюс­трировать понятия и факты стереометрии. Наш куб склеен из шести гранейквадратов. Исходя из этого, мы будем выводить и другие его свойства. Например, можно утверждать, что прямая АВ параллельна C¹D¹, потому что обе они параллельны общей стороне CD со­держащих их квадратов.

С
В
Рис. 4

В стереометрии отношение параллельности рассматривается и для плоскостей: две пло­скости или прямая и плоскость параллельны, если они не имеют общих точек. Прямую и плоскость удобно считать параллельными и в том случае, когда лежит в плоскости. Для плоскостей и прямых справедливы теоремы о транзитивности:

· Если две плоскости параллельны третьей плоскости, то они параллельны между собой.

· Если прямая и плоскость параллельны некоторой прямой( или плоскости), то они параллельны друг другу.

Наиболее важный частный случай второй теоремы признак параллельности прямой и плоскости:

· Прямая параллельна плоскости, если она параллельна некоторой прямой в этой плоскости.

А вот признак параллельности плоскостей:

· Если две пересекающиеся прямые в одной плоскости соответственно параллельны двум пересекающимся прямым в другой плоскости, то и плоскости параллельны.

Часто используется и такая простая теорема:

· Прямые, по которым две параллельные плоскости пересекаются третьей, параллельны друг другу.

Посмотрим еще раз на куб (рис. 4). Из признака параллельности прямой и плоскости следует, например, что прямая А¹В¹ параллельна плоскости АВСD (так как она параллельна прямой АВ в этой плоскости), а противоположные грани куба, в частности А¹В¹С¹D¹ и ABCD, параллельны по признаку параллельности плоскостей: прямые A¹B¹ и B¹С¹ в одной грани соответственно параллельны прямым АВ и ВС в другой. И чуть менее простой пример. Плоскость, содержащая параллельные прямые AA¹ и СС¹, пересекают параллельные плоскости АВСD и A¹B¹C¹D¹ по прямым АС и А¹С¹, значит, эти прямые параллельны: аналогично, параллельные прямые В¹С и А¹D. Следовательно, параллельные плоскости АВ¹С и А¹DC, пересекающие куб по треугольникам.

III . Изображение пространственных фигур.

Есть такой афоризм «Геометрия — это искус­ство правильно рассуждать на неправильном чертеже». Действительно, если вернуться к из­ложенным выше рассуждениям, то окажется:

единственная польза, которую мы извлекли из сопровождавшего их рисунка куба, состоит в том, что он сэкономил нам место на объясне­нии обозначений. С тем же успехом можно было изобразить его, как тело на рис. 4, я, хотя, очевидно, представленное на нём «нечто» не только не куб, но и не многогранник. И всё же в приведённом афоризме заключена лишь часть правды. Ведь прежде, чем «рассуждать» — излагать готовое доказательство, надо его при­думать. А для этого нужно ясно представлять себе заданную фигуру, соотношения между её элементами. Выработать такое представление помогает хороший чертёж. Более того, как мы увидим, в стереометрии удачный чертёж мо­жет стать не просто иллюстрацией, а основой решения задачи.

а

Рис. 5
б

Художник (вернее, художникреалист) на­рисует наш куб таким, каким мы его видим (рис. 5, б), т. е. в перспективе, или централь­ной проекции. При центральной проекции из точки О (центр проекции) на плоскость а про­извольная точка Х изображается точкой X’, в которой а пересекается с прямой ОХ (рис. 6). Центральная проекция сохраняет прямоли­нейное расположение точек, но, как правило, переводит параллельные прямые в пересека­ющиеся, не говоря уже о том, что изменяет расстояния и углы. Изучение её свойств при­вело к появлению важного раздела геометрии (см. статью «Проективная геометрия»).

Рис. 6

Но в геометрических чертежах используется другая проекция. Можно сказать, что она получается из центральной когда центр О удаляется в бесконечность и прямые ОХ становятся па­раллельными.

Выберем плоскость а и пересекающую её прямую l . Проведём через точку Х прямую, па­раллельную l . Точка X’, в которой эта прямая встречается с а, и есть параллельная проекция Х на плоскость, а вдоль прямой l (рис. 7). Про­екция фигуры состоит из проекций всех её точек. В геометрии под

α
D
C
B
A
l

Рис. 7

изображением фигуры понимают её параллельную проекцию.

В частности, изображение прямой линии — это прямая линия или (в исключительном слу­чае, когда прямая параллельна направлению проекции) точка. На изображении параллель­ные прямые так и остаются параллельными, сохраняется здесь и отношение длин парал­лельных отрезков, хотя сами длины и изменя­ются. Всё вышесказанное можно уложить в одну короткую формулировку основного свой­ства параллельной проекции:

· Если АВ = k CD, а A¹, B¹, C¹ и D¹ проекции точек A, B, C и D, то B¹= k D¹.

Черта здесь означает направленные отрезки (векторы), а равенство — совпадение не толь­ко длин, но и направлений (рис. 7). Таким об­разом, если задать изображения точек А и В, то будут однозначно определены и изображения всех точек Х прямой АВ, поскольку множитель k в равенстве AX = kAB на параллельной про­екции и оригинале одинаков. Аналогично, по изображениям трёх точек, не лежащих на од­ной прямой, однозначно восстанавливаются изображения всех точек проходящей через них плоскости, а задав изображения четырёх точек, не находящихся в одной плоскости, мы предопределяем изображения всех точек про­странства.

В то же время изображением данной трой­ки точек, т. е. треугольника, может служить тре­угольник любой заданной формы. В этом легко убедиться: проведём через сторону Поданного треугольника

Рис. 8

ЛВС любую плоскость а, постро­им в ней треугольник АВС нужной формы и спроектируем треугольник АВС на α вдоль пря­мой l = СС¹ (рис. 8). Взяв в качестве А В С равно­бедренный прямоугольный треугольник и до­строив его до квадрата ABCD , увидим, что в параллельной проекции квадрат легко превращается в любой параллелограмм. Более того, можно доказать, что изображением любой данной треугольной пирамиды могуг быть лю­бые четыре точки, не лежащие на одной пря­мой, вместе с соединяющими их отрезками.

Правильно выбранное изображение помо­гает решать задачи. Найдём, например, отно­шения, в которых треугольное сечение A¹BD нашего куба (рис. 9, а) делит отрезок, соединяющий середины Р и Q рёбер AD и В¹С¹. По­смотрим на куб со стороны бокового ребра ВВ¹, а точнее говоря, спроектируем куб вдоль прямой BD па плоскость АА¹С¹С. Понятно,чтопроекцией будет сам прямоугольник АА¹С¹С с проведённым в нём отрезком, соединяющим середины оснований (точки В и D совпадут;

Учебная работа № 1353. Геометрия в пространстве