Учебная работа № 1346. Математическая теория захватывания

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (6 оценок, среднее: 4,67 из 5)
Загрузка...
Контрольные рефераты

Учебная работа № 1346. Математическая теория захватывания

и краткое резюме

Настоящая работа посвящена исследованию движений автоколебаний системы с одной степенью свободы под действием внешней периодической силы. Такие движения представляют интерес для радиотелеграфии (например, к исследованию таких движений сводится теория регенеративного приемника). Особенно замечательно здесь явления так называемого «захватывания». Это явление заключается в том, что, когда период внешней силы достаточно близок к периоду автоколебаний системы, биения пропадают; внешняя сила как бы «захватывает» автоколебания. Колебания системы начинают совершаться с периодом внешнего сигнала, хотя их амплитуда весьма сильно зависит от амплитуды «исчезнувших» автоколебаний. Интервал захватывания зависит от интенсивности сигнала и от автоколебательной системы.

Теоретически этот вопрос уже разбирался, однако методами математически недостаточно строгими; кроме того, бралась характеристика весьма частного вида кубическая парабола. Поэтому мы будем рассматривать случай произвольной характеристики при колебаниях близких к синусоидальных.

В этой работе мы рассмотрим периодические решения с периодом, равным периоду внешней силы, и их устойчивость при малых отклонениях. Мы оставим в стороне другие стационарные движения, возможные в исследуемой системы, например периодические решения с периодом, кратным периоду внешней силе, или квазипериодические решения. Мы оставим в стороне важный вопрос об устойчивости при больших отклонениях

Для отыскания периодических решений воспользуемся методом Пуанкаре, которые позволяют быстро решить задачу для случая колебаний, достаточно близких к синусоидальным. С этой целью введем в наше уравнение параметр m таким образом, чтобы при m = 0 уравнение превращалось в линейное и колебания делались синусоидальными. Этот параметр m, который мы предполагать достаточно малым, может иметь различный смысл в зависимости от выбора системы.

Для решения вопроса об устойчивости найденного решения при малых отклонениях воспользуемся методами Ляпунова, требуя, чтобы искомые решения обладали «устойчивостью по Ляпунову».

В настоящей работе мы не будем вычислять радиусы сходимости тех рядов, с которыми нам придется иметь дело; грубая оценка может быть сделана по Пуанкаре.

В § 1 и 2 рассматривается область достаточно сильной расстройки; § 3 и 4 посвящены рассмотрению области резонанса; в § 5 показывается, как общие формулы для амплитуд и для устойчивости, полученные в § 1 4, могут быть применены в конкретных случаях, причем в качестве примера рассматривается случай Ван дер Поля. Результаты применения общих формул совпадают с теми, которые получил нестрогим путем Ван дер Поль.

§ 1 Отыскание периодического решения в случае достаточно сильной расстройки.

Уравнение, которое нас будет интересовать:

При m = 0 это уравнение имеет единственное периодическое решение

Рассмотрим случай, когда m бесконечно мало. Согласно Пуанкаре мы будем искать решение (1) в следующем виде:


Начальные условия выберем так:

F2 степенной ряд по b1 b2 , m начинающийся с членов второго порядка. Подставим (3) в (1):

Сравнивая коэффициенты при b1 b2 , m получим уравнение для А, В, С. Начальные условия можно получить для них, подставив (4) в (3).

Решая задачи Коши, получим:

Для того, чтобы (3) представляли периодические решения необходимо и достаточно, чтобы

Введем обозначения ; для остальных функций аналогично.

Тогда (6) запишется в виде:

Если в этой системе можно b1 b2 представить в виде функции m так, чтобы b1 b2 , m исчезли из системы (7) , то (3) периодическое решение уравнения (1). Иначе Х не периодично. Достаточным условием существования периодического решения при малых m служит неравенство 0 Якобиана.

В нашем случае:

Т.е. мы всегда имеем периодические решения при малых m и любых f. Искомое периодическое решение может быть найдено в виде.

§ 2 Исследование устойчивости периодического решения

Составим уравнения первого приближения, порождаемое решением (8). Сделаем замену: x =Ф(t) + x; в уравнении (1) при этом отбросим члены , содержащие квадраты и высшие степени x и x .

Воспользуемся тем фактом, что Ф (t) решение уравнения. Получим уравнение первого приближения:

Это линейное дифференциальное уравнение с периодическими коэффициентами. Его решение мы будем искать в видефункции времени Удовлетворяют тому же уравнению, что и x, то есть (10). Начальные условия для них определены следующим образом.

; аналогичным образом можно показать, что (11).

Представим правую часть уравнения в виде степенного ряда по m.

будем искать в виде: (12).

Подставим (12) в (10) и сравнивая коэффициенты при соответствующих степенях m, получим:

Начальные условия для Ао , Во , …. Следует выбрать так, чтобы выполнялись условия (11). Действительно подставляя (11) в (12) и сравнивая коэффициенты при соответствующих степенях m, получим

Для В о и Во аналогично. Для остальных же как видно из уравнений условия будут нулевые. Итак:

(14)

Решение (13) можно найти при помощи квадратур:

(15)

Если вспомнить общую теорию линейных диффуров с периодическими коэффициентами, то общее решение (10) имеет вид:

S1 , S2 периодические функции с тем же периодом, что и Ф (t). a1 , a2 характеристические показатели.

Если все , т.е. колебания затухают, то в этом случае выполняется теорема, доказанная Ляпуновым, относительно того, что периодическое решение уравнения первого приближения вполне устойчиво. Согласно Пуанкаре характеристические показатели можно определить из следующего уравнения:

=0 (16) Полагаем ;

Тогда определитель будет:

Вопрос об устойчивости, как сказано выше, решается знаком Re (a), или что все равно ÷l÷ . Если ÷l÷ < 1 имеет место устойчивость ÷l÷ = 1 этот случай для нашей задачи не представляет интереса. ÷l÷> 1 имеет место неустойчивость.

При рассмотрении (18) имеют место 2 случая q > р2 ; q < р2 ; В первом случае lкомплексные; ½l2 ½=q; (20) если q<1; устойчивость q>1 неустойчивость.

Случай второй l действительные: ; (21) устойчивость соответствует p и q нетрудно получить в виде рядов по степени m из формул (19) (12).

(22)

Если принять во внимание (15)

(22a)

(23)

Мы видим, что при достаточно малом m и w¹n; n ‘Z вопрос об устойчивости решается величиной q и следовательно знаком b, если b < 0 имеет место устойчивость, b > 0 неустойчивость.

В нашем случае b имеет вид:

(23a)

§ 3 Отыскание периодического решения в области резонанса.

Тогда l=mlо ; w2 = 1+ aо m, (24) (aо , m расстройка , реальный физический резонанс наступает при aо ¹ 0).

Тогда исследуемое уравнение имеет вид :

(25)

При m = 0 периодическое решение будет иметь вид : (26)

Следуя Пуанкаре, мы можем предположить периодическое решение в виде:

(27);

Начальные условия возьмем как и раньше:

Аналогично тому, как мы это делали в предыдущих параграфах. Подставляем (27) в (25) и, сравнивая коэффициенты при b1 b2 , m и других интересующих нас величинах, получим уравнение, которым удовлетворяет A, B, C, D, E, F. Начальные условия для этих уравнений определим, если подставим (28) в (27).

(29)

Запишем условия периодичности для (27):

Делим на m:

( 30a )

Необходимым условием существования периодического решения является:

Эти уравнения определяют P и Q решения (26), в близости к которому устанавливается периодическое решение. Они могут быть записаны в раскрытой форме :

(31)

Для существования искомого периодического решения достаточно неравенство 0 детерминанта: (см. § 1).

D, Е и их производные найдутся из (29) при помощи формул аналогичных (15). Заметим, что (30) мы можем определить b1, b2 , в виде рядов по степеням m. Таким образом, мы можем (27) как и в § 1 представить в виде ряда.

(33)

P,Qопределяются формулами (31) (32).

§ 4 Исследование устойчивости периодических решений в области резонанса

Аналогично тому, как мы это делали в § 2, составим уравнение первого приближения, порожденное решением (33).

Решение опять будем искать в виде . Однако нет необходимости проделывать все выкладки заново. Воспользуемся результатами § 2, приняв:

Из формул (22)

Учебная работа № 1346. Математическая теория захватывания