Учебная работа № 1332. Применение свойств функций для решения уравнений

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (4 оценок, среднее: 4,75 из 5)
Загрузка...
Контрольные рефераты

Учебная работа № 1332. Применение свойств функций для решения уравнений

Применение свойств функций для решения уравнений

Т.С. Кармакова, доцент кафедры алгебры ХГПУ

В предлагаемой статье речь идет о нестандартных приемах решения уравнений, основанных на простых и хорошо известных учащимся свойствах и характеристиках функций, таких как непрерывность, монотонность наибольшее и наименьшее значение. Используя предлагаемые автором задачи и методы их решения, учитель сможет сформировать у учащихся более широкий взгляд на область применения различных этих свойств. Ведь не секрет, что в стандартном курсе школьной математики свойства функций применяются в основном для построения их графиков.

В соответствии с обязательным минимумом содержания среднего (полного) общего образования, утвержденным Министерством образования РФ (пр. №56 от 30.06.99), все учащиеся должны знать три основных метода решения уравнений:

Разложение на множители,

Замена переменных,

Использование свойств функций.

Рассмотрим на конкретных примерах сущность третьего метода. Этот метод применяется тогда, когда уравнение F(x)=G(x) в результате преобразований или замены переменных не может быть приведено к тому или иному стандартному уравнению, имеющему определенный алгоритм решения. Продемонстрируем использование некоторых свойств функций к решению уравнений указанного выше вида в случае, когда F(x) и G(x) любые элементарные функции.

Использование области определения и области значения функций

Решить уравнение

Решение: Множество решений этого уравнения совпадает с областью определения функции . Областью определения этой функции (в соответствии с определением степени с рациональным показателем) является множество положительных действительных чисел.

Ответ: x>0.

Решить уравнение sinxctgx=cosx.

Решение: Множество решений этого уравнения совпадает с областью определения уравнения. Область определения уравнения – это общая часть областей определения функций, входящих в уравнение. Следовательно, множество решений уравнения – множество всех действительных чисел, кроме x=kp, где kÎZ.

Ответ: x¹kp, где kÎZ.

Решить уравнение .

Решение: У этого уравнения нет корней, так как область значений функции при x³1 есть множество неотрицательных чисел, а функция при всех x принимает отрицательные значения.

Решить уравнения:

а)

б)

в)

г)

д)

е)

Ответы: а) x>0, x¹1; б) êxê£1; в) x¹0; г) x³0; д) Нет корней; е) x¹0.

Использование экстремальных значений функций

Сущность этого способа решения уравнений в том, что оцениваются правая и левая части уравнения F(x)=G(x) и, если одна из функций принимает значение не меньше некоторого числа А, а другая – не больше этого же числа А, то данное уравнение заменяется системой уравнений:

Этот способ может быть применен к решению следующих уравнений:

в обеих частях уравнения стоят функции разного вида;

в одной части уравнения функция, ограниченная сверху, а в другой – ограниченная снизу;

в одной части уравнения стоит функция, ограниченная сверху или снизу, а в другой – конкретное число.

Рассмотрим конкретные примеры.

2.1 Решить уравнение

Решение: Оценим правую и левую части уравнения:

а) , так как , а ;

б) , так как .

Оценка частей уравнения показывает, что левая часть не меньше, а правая не больше двух при любых допустимых значениях переменной x. Следовательно, данное уравнение равносильно системе

Первое уравнение системы имеет только один корень х=2. Подставляя это значение во второе уравнение получаем верное числовое равенство:

Ответ: х=2.

2.2 Решить уравнение

Решение: левая часть уравнения не больше двух, а правая – не меньше двух, следовательно, данное уравнение равносильно системе:

Второе уравнение в этой системе имеет единственный корень х=0. Подставляя найденное значение х в первое уравнение, получаем верное числовое равенство.

Ответ: х=0.

2.3 Решить уравнение

Решение: Оценим левую часть уравнения: , следовательно, . Получили, что в данном уравнении левая часть не больше восьми, а правая часть равна девяти при всех действительных значениях переменной х, поэтому данное уравнение не имеет корней.

Ответ: нет корней.

2.4 Решить уравнения:

а)

б)

в)

г)

д)

е)

Ответы: а) p; б) 0; в) 0; г) 0.5; д) 1; е) нет корней.

Использование монотонности функций

Этот способ основан на следующих теоретических фактах:

Если одна функция возрастает, а другая убывает на одном и том же промежутке, то графики их либо только один раз пересекутся, либо вообще не пересекутся, а это означает, что уравнение F(x)=G(x) имеет единственное решение, либо вообще не имеет решений;

Если на некотором промежутке одна из функций убывает (возрастает), а другая принимает постоянные значения, то уравнение F(x)=G(x) либо имеет единственный корень, либо не имеет корней.

Сущность этого способа состоит в том, исследуются на монотонность левая и правая части уравнения и, если оказывается, что функции удовлетворяют какому либо из приведенных условий, то найденное подбором решение будет единственным корнем уравнения.

Этот способ можно использовать для решения следующих типов уравнений:

уравнения, в обеих частях которых стоят функции разного вида;

уравнения, в одной части которых убывающая, а в другой – возрастающая на данном промежутке функции;

уравнения, одна часть которых – возрастающая или убывающая функция, а вторая – число.

Рассмотрим примеры.

3.1 Решить уравнение

Решение: область определения данного уравнения x>0. Исследуем на монотонность функции . Первая из них –убывающая (так как это логарифмическая функция с основанием больше нуля, но меньше единицы), а вторая – возрастающая (это линейная функция с положительным коэффициентом при х). Подбором легко находится корень уравнения х=3, который является единственным решением данного уравнения.

Ответ: х=3.

3.2 Решить уравнение

Решение: Данному уравнению удовлетворяет число х=2. Проверим, удовлетворяют ли функции, образующие уравнение, условиям, при которых можно утверждать, что других корней нет. Сначала рассмотрим . Исследуем ее на монотонность с помощью производной: . Решаем биквадратное уравнение

,

,

поэтому при всех значениях хÎR., следовательно, функция f(x) возрастающая.

Теперь исследуем функцию . Как легко установить, она убывает при всех значениях хÎR. Из проведенного исследования можно сделать вывод, что х=2 – единственный корень данного уравнения.

Ответ: х=2

3.3 Решить уравнение

Решение: Легко проверить, что х=1 – корень данного уравнения, но мы пока не можем утверждать, что других корней нет, так как и левая и правя части уравнения – возрастающие функции. Преобразуем данное уравнение к виду . Функция в левой части – сумма двух убывающих функций, а следовательно, она также убывающая. В правой же части стоит постоянная функция. Таким образом, рассматриваемое уравнение может иметь только один корень.

Ответ: х=1

3.4 Решить уравнения:

а) 2×3+9×2+150×161=0

б) 13x+7x=2

в) 2x+5x=2tgx

г)

д)

е) x+2=76x

Ответы: а) х=1; б) х=0; в) х=0; г) х=2; д) х=4; е) х=5.

В конце приведем список литературы, по которому читатели смогут самостоятельно изучить, как использовать различные свойства функций при решении уравнений.

Список литературы

Аксенов А.А. Решение задач методом оценки.//Математика в школе, 1999, №3, с. 30

Дорофеев Г.В., Потапов М.К., Розов Н.Х. Пособие по математике для поступающих в Вузы. М.: Наука, 1976

Литвиненко В.Н., Мордкович А.Г. Практикум по элементарной математике: алгебра, тригонометрия. М.: Просвещение, 1991

Шарыгин И.М., Голубев В.И. Решение задач: Учебное пособие для 11 классов общеобразовательных учреждений. – М.: Просвещение, 1995

Учебная работа № 1332. Применение свойств функций для решения уравнений