Учебная работа № 1275. Конспект по дискретной математики

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (3 оценок, среднее: 4,67 из 5)
Загрузка...
Контрольные рефераты

Учебная работа № 1275. Конспект по дискретной математики

Дискретная математика

Общество 21в. – общество информационное. Центр тяжести в решении задач переместился от задач вычислительной математики к задачам на дискретных структурах. Математика нужна не как метод расчета, а как метод мышлению средство формирования и организации…

Такое владение математикой богатой культуры, понимание важности точных формулировок.

В дисциплине мало методов, но много определений и терминов. В основе дискретной математике 4 раздела:

1. Язык дискретной математики;

2. Логические функции и автоматы;

3. Теория алгоритмов;

4. Графы и дискретные экстремальные задачи.

Теория алгоритмов и формальных систем является центральной в дисциплине. В настоящие время от нее возникли ответвления, например, разработка алгоритмических языков программирования.

Одной из важнейших проблем в дискретной математики является проблема сложности вычислений.

Теория сложности вычислений помогает оценить расход времени и памяти при решении задач на ЭВМ. Теория сложности позволяет выделить объективно сложные задачи (задачи перебора) и неразрешимые задачи.

Мы будем заниматься решением задач реальной размерности с учетом ограниченности временных и емкостных ресурсов ЭВМ.

Множества и операции над ними

Одно из основных понятий математики – множество.

Определение:

Множеством называется совокупность, набор предметов, объектов или элементов.

Множество обозначают: M,N …..

m1 , m2 , mn – элементы множества.

Символика

A Î M – принадлежность элемента к множеству;

А Ï М – непринадлежность элемента к множеству.

Примеры числовых множеств:

1,2,3,… множество натуральных чисел N;

…,2,1,0,1,2,… множество целых чисел Z.

множество рациональных чисел а.

I – множество иррациональных чисел.

R – множество действительных чисел.

K – множество комплексных чисел.

Множество А называется подмножеством В, если всякий элемент А является элементом В.

А Í В – А подмножество В (нестрогое включение)

Множества А и В равны, если их элементы совпадают.

A = B

Если А Í В и А ¹ В то А Ì В (строгое включение).

Множества бывают конечные и бесконечные.

|М| мощность множества (число его элементов).

Конечное множество имеет конечное количество элементов.

Пустое множество не содержит элементов: M = Æ .

Пример: пустое множество:

1) множество действительных корней уравнения x2 +1=0 пустое: M = Æ .

2) множество D, сумма углов которого ¹ 1800 пустое: M = Æ .

Если дано множество Е и множество и мы рассматриваем все его подмножества, то множество Е называется униварсельным.

Пример: Если за Е взять множество книг то его подмножества: художественные книги, книги по математике, физики, физики …

Если универсальное множество состоит из n элементов, то число подмножеств = 2n .

Если , состоящее из элементов E, не принадлежащих А, называется дополненным.

Множество можно задать:

1) Списком элементов {a,b,c,d,e};

2) Интервалом 1<x<5;

3) Порождающей процедурой: xk =pksinx=0;

Операции над множествами

1) Объединение множеств А и В (союз или). Множество, состоящие из элементов, которые принадлежат хотя бы одному из множеств А или В называется объединенным.

А È В

Отношение множеств наглядно иллюстрируется с помощью диаграмм Венна.

Диаграмма Венна – это замкнутая линия, внутри которой расположены элементы множества.

Объединение двух множеств

А

В

Объединение системы множеств можно записать

объединение системы n множеств.

Пример: объединение множеств, когда они

заданы списком.

A = {a,b,d} B = {b,d,e,h} AUB = {a,b,c,d,e,h}

AUB AUB

Объединение трех множеств:

2) Пересечением множеств А и В называется множество, состоящие из элементов принадлежащих одновременно множествам А и В.

AÇB

Пересечение прямой и плоскости

1) если прямые || пл., то множество пересечений – единственная точка;

2) если прямые II пл., то M¹Æ;

3) если прямые совпадают, то множество пересечений = множество прямой.

Пересечение системы множеств:

4) Разностью 2х множеств А и В называется множество, состоящее из всех элементов А, не входящих в В.

С = А \ В

A \ B

A \ B

А

А \ В

B
A

В
А
В

A = {a,b,d}; B = {b,c,d,h} C = A \ B={a}.

В отличии от предыдущих операций разность: 1) строго двухместна;

2) не коммутативна, т.е. A\B¹B\A.

4) дополнение

E – универсальное множество.

дополнение

Операции объединения, пересечения и дополнения называются Булевыми.

Основные законы операций над множествами.

Некоторые свойства È, Ç похожи на алгебраические операции, однако многие свойства операций над множествами все же отличаются.

Основные свойства

1) AUB = BUA ; A Ç B = B Ç A –переместительный закон объединения и пересечения.

2) ( А UB)UC = AU(BUC); (A Ç B) Ç C=A Ç (B Ç C) – сочетательныйзакон.

3) А U Æ =A, A ÇÆ = Æ , A \ Æ =A, A \ A= Æ

1,2,3 – есть аналог в алгебре.

3.а) Æ \ A = Æ нет аналога.

4) Æ; E \ A =; A \ E=Æ; AUA=A; AÇA=A; AUE=E; AÇE=A;

5.а) свойства 14 очевидны и не нуждаются в доказательствах.

5) A Ç ( BUC )=( A Ç B )( A Ç C ) – есть аналогичный распределительный закон Ç относительно U.

Прямые произведения и функции

Прямым декартовым “х” множеством А и В называется множество всех пар (a;b), таких, что аÎА, bÎB.

С=AхВ, если А=В то С=А2 .

Прямыми «х» n множеств A1 x,…,xAn называется множество векторов (a1 ,…an ) таких, что a1 ÎA1 ,…, An ÎAn .

Через теорию множеств введем понятие функции.

Подмножество FÎMx xMy называется функцией, если для каждого элемента хÎMx найдется yÎМу не более одного.

(x;y)ÎF, y=F(x).

Соответствие между аргументом и функцией можно изобразить с помощью диаграммы Венна:

Определение: Между множествами MX и MY установлено взаимноодназночное соответствие, если каждому хÎMX соответствует 1 элемент yÎMY и обратное справедливо.

Пример: 1) (х,у) в круге

2) x = sinx

R R

Пусть даны две функции f: AB и g: BC, то функция y:AC называется композицией функций f и g.

Y=fogo – композиция.

Способы задания функций:

1) таблицы, определены для конечных множеств;

2) формула;

3) графики;

Способы 13 частные случаи выч. процедуры.

Пример процедуры, не относящейся к 3 способам задания функций n!

Взаимнооднозначное соответствие и мощности множеств.

Определение: Множества равномощны |A|=|B| если между ними взаимнооднозначное соответствие.

Теорема: Если для конечного множества А мощность равна |A| то количество всех подмножеств 2| A | =2n .

Множества равномощные N называются счетными, т.е. в них можно выполнить нумерацию элементов. N – множество натуральных чисел.

Множество N2 – счетно.

Доказательство

Разобьем N2 на классы

К 1ому классу отнесем N1 (1; 1)

1ый элемент 1го множества

1ый элемент

2го множества

Ко 2му классу N2 {(1;2), (2;1)}

К iму классу Ni {(a;b)| (a+b=i+1}

Каждый класс будет содержать i пар.

Упорядоченный классы по возрастанию индекса i, а пары внутри класса упорядоченные по направлению первого элемента а.

Занумеруем последовательность классов, что и доказывает счетность множества N2 .

Аналогично доказывается счетность множеств N3 ,…,Nk .

Теорема Кантора:

Множество всех действительных чисел на отрезке [0;1] не является счетным.

Доказательство

Допустим это множество счетно изобразим его числа десятичными дробями.

}

1

1я 0, a11 , a12 ….

2я 0, а21 , a22 ….

………………….

Возьмем произвольное число 0,b1 ,b2 ,b3

1

b1 ¹a11 , b2 ¹a22 , …

Эта дробь не может выйти в последовательность т.к. отличается от всех чисел, значит нельзя пронумеровать числа на отрезке [0;1].

Множество нечетно и называется континуальным, а его мощность континуум.

Метод, используемый при доказательстве, называется диагональным методом Кантора.

Отношение

Пусть дано RÍMn – n местное отношение на множество М.

Будем изучать двухместные или бинарные отношения. Если а и b находятся в отношении R, то записывается а Rb.

Проведем отношение на множество N:

А) отношение £ выполняется для пар (7,9) (7,7_

Б) (9,7) не выполняется.

Пример отношения на множество R

А) отношение находится на одинаковом расстоянии от начала координат выполняется для пар (3; 4) и (2; Ö21)

Б) (3; 4) и (1; 6) не выполняется.

Для задания бинарных отношений можно использовать любые способы задания множеств.

Для конечных множеств используют матричный способ задания множеств.

Матрица бинарного отношения на множество M={1;2;3;4}, тогда матрица отношения С равна

С=

1 2 3 4
1 1 1 1 1
2 0 1 1 1
3 0 0 1 1
4 0 0 0 1

101

010

001

С=

Отношение Е заданные единичной матрицей называется отношением равенства.

Отношением назовется обратным к отношением R, если aj Rai

Учебная работа № 1275. Конспект по дискретной математики