Учебная работа № 1198. Теория вероятности и мат статистика

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (3 оценок, среднее: 4,67 из 5)
Загрузка...
Контрольные рефераты

Учебная работа № 1198. Теория вероятности и мат статистика

Киевский политехнический институт

Кафедра КСОИУ

Конспект лекций

по курсу:

Теория вероятности и математическая статистика”

Преподаватель: Студент II курса

ФИВТ, гр. ИС41

проф. Павлов А. А. Андреев А. С.

Киев 1996 г.

.

Теория вероятности возникла как наука из убеждения, что в основе массовых случайных событий лежат детерминированные закономерности. Теория вероятности изучает данные закономерности.

Например: определить однозначно результат выпадения “орла” или “решки” в результате подбрасывания монеты нельзя, но при многократном подбрасывании выпадает примерно одинаковое число “орлов” и “решек”.

Испытанием называется реализация определенного комплекса условий, который может воспроизводиться неограниченное число раз. При этом комплекс условий включает в себя случайные факторы, реализация которого в каждом испытании приводит к неоднозначности исхода испытания.

Например: испытание подбрасывание монеты.

Результатом испытания является событие. Событие бывает:

Достоверное (всегда происходит в результате испытания);

Невозможное (никогда не происходит);

Случайное (может произойти или не произойти в результате испытания).

Например: При подбрасывании кубика невозможное событие кубик станет на ребро, случайное событие выпадение какой либо грани.

Конкретный результат испытания называется элементарным событием.

В результате испытания происходят только элементарные события.

Совокупность всех возможных, различных, конкретных исходов испытаний называется пространством элементарных событий.

Например: Испытание подбрасывание шестигранного кубика. Элементарное событие выпадение грани с “1” или “2”.

Совокупность элементарных событий это пространство элементарных событий.

Сложным событием называется произвольное подмножество пространства элементарных событий.

Сложное событие в результате испытания наступает тогда и только тогда, когда в результате испытаний произошло элементарное событие, принадлежащее сложному.

Таким образом, если в результате испытания может произойти только одно элементарное событие, то в результате испытания происходят все сложные события, в состав которых входят эти элементарные.

Например: испытание подбрасывание кубика. Элементарное событие выпадение грани с номером “1”. Сложное событие выпадение нечетной грани.

Введем следующие обозначения:

А событие;

w элементы пространства W;

W пространство элементарных событий;

U пространство элементарных событий как достоверное событие;

V невозможное событие.

Иногда для удобства элементарные события будем обозначать E­i, Qi.

Операции над событиями.

1. Событие C называется суммой A+B, если оно состоит из всех элементарных событий, входящих как в A, так и в B. При этом если элементарное событие входит и в A, и в B, то в C оно входит один раз. В результате испытания событие C происходит тогда, когда произошло событие, которое входит или в A или в B. Сумма произвольного количества событий состоит из всех элементарных событий, которые входят в одно из Ai, i=1, …, m.

2. Событие C произведением A и B, если оно состоит из всех элементарных событий, входящих и в A, и в B. Произведением произвольного числа событий называется событие состоящее из элементарных событий, входящих во все Ai, i=1, …, m.

3. Разностью событий AB называется событие C, состоящее из всех элементарных событий, входящих в A, но не входящих в B.

4. Событие называется противоположным событию A, если оно удовлетворяет двум свойствам.

Формулы де Моргана: и

5. События A и B называются несовместными, если они никогда не могут произойти в результате одного испытания.

События A и B называются несовместными, если они не имеют общих элементарных событий.

C=AЧB=V

Тут V пустое множество.

Частость наступления события.

Пусть пространство элементарных событий конечно и состоит из m элементарных событий. В этом случае в качестве возможных исходов испытаний рассматривают 2­­m событий множество всех подмножеств пространства элементарных событий W и невозможное событие V.

Пример:

W=(w1, w2, w3)

A1=V

A2=(1)

A3=(2)

A4=(3)

A5=(1, 2)

A6=(2, 3)

A7=(1, 3)

A8=(w1, w2, w3)

Обозначим систему этих событий через F. Берем произвольное событие AОF. Проводим серию испытаний в количестве n. n это количество испытаний, в каждом из которых произошло событие A.

Частостью наступления события A в n испытаниях называется число

Свойства частости.

  1. Частость достоверного события равна 1. n(U)=1.

  2. Частость суммы попарно несовместных событий равна сумме частостей.

Рассмотрим систему Ai, i=1, …, k; события попарно несовместны, т.е.

Событие

Пусть в результате некоторого испытания произошло событие A. По определению сумы это означает, что в этом испытании произошло некоторое событие Ai. Так как все события попарно несовместны, то это означает, что никакое другое событие Aj (ij) в этом испытании произойти не может. Следовательно:

nA=nA1+nA2+…+nAk

Теория вероятности используется при описании только таких испытаний, для которых выполняется следующее предположение: Для любого события A частость наступления этого события в любой бесконечной серии испытаний имеет один и тот же предел, который называется вероятностью наступления события A.

Следовательно, если рассматривается вероятность наступления произвольного события, то мы понимаем это число следующим образом: это частость наступления события в бесконечной (достаточно длинной) серии испытаний.

К сожалению, попытка определить вероятность как предел частости, при числе испытаний, стремящихся к бесконечности, закончилась неудачно. Хотя американский ученый Мизес создал теорию вероятности, базирующуюся на этом определении, но ее не признали изза большого количества внутренних логических несоответствий.

Теория вероятности как наука была построена на аксиоматике Колмогорова.

Аксиоматика теории вероятности.

Построение вероятностного пространства.

Последовательно строим вероятностное пространство.

Этап 1:

Имеется испытание. В результате проведения испытания может наблюдаться одно событие из серии событий e. Все события из системы e называются наблюдаемыми. Введем предположение, что если события A М e, B М e наблюдаемы, то наблюдаемы и события .

Система событий F называется полем событий или алгеброй событий, если для двух произвольных событий A, B М F выполняется:

  1. Дополнения

  2. (A+B) О F, (AЧB) О F

  3. все конечные суммы элементов из алгебры принадлежат алгебре

  4. все конечные произведения элементов из алгебры принадлежат алгебре

  5. все дополнения конечных сумм и произведений принадлежат алгебре.

Таким образом, систему e мы расширяем до алгебры или поля F путем включения всех конечных сумм, произведений, и их дополнений. Т.е. считаем, что в результате проведения испытания наблюдаемая система является полем или алгеброй.

Множество всех подмножеств конечного числа событий является наблюдаемой системой алгеброй, полем.

Этап 2:

Каждому событию A О F ставим в соответствие число P(A), которое называется вероятностью наступления события A. Такая операция задает вероятностную меру.

Вероятностная мера числовая скалярная функция, аргументами которой являются элементы из системы алгебры F. Введенная вероятностная мера удовлетворяет системе из трех аксиом.

  1. P(U)=1.

  2. Рассмотрим конечную или бесконечную систему попарно несовместных событий, каждое из которых принадлежит алгебре F.

. Если , то .

Алгебра событий называется s алгеброй, если эта система событий содержит в себе все конечные суммы и произведения из алгебры F и их дополнения, а также все бесконечные суммы и произведения из алгебры и их дополнения.

Пример: В пространстве R1 зададим в качестве поля событий все конечные интервалы вида aіx>b, ba.

Распространение этой алгебры на s алгебру приводит к понятию борелевской алгебры, элементы которой называются борелевскими множествами. Борелевская алгебра получается не только расширением поля вида aіx>b, но и расширением полей вида a>xіb, aіxіb.

Над наблюдаемым полем событий F задается счетноаддитивная мера числовая скалярная функция, элементами которой являются элементы поля F, т.е. события. Она удовлетворяет следующим трем условиямаксиомам теории вероятности.

  1. . P(A) число, принадлежащее сегменту [0, 1] и называющееся вероятностью наступления события A.

  2. P(A) О [0, 1] P(U)=1.

  3. Пусть имеется A1, A2, A3,…, Ak система попарно несовместных событий

Если , то .

Теорема о продолжении меры.

Построим минимальную s алгебру, которой принадлежит поле событий F (например, борелевская s алгебра это минимальная s алгебра, которая содержит поле всех полуинтервалов ненулевой длины).

Тогда доказывается, что счетноаддитивная функция P(A) однозначно распространяется на все элементы минимальной s алгебры и при этом ни одна из аксиом не нарушается.

Таким образом, продленное P(A) называется s аддитивной мерой.

s алгебра содержит ненаблюдаемые события наряду с наблюдаемыми.

Но в аксиоматической теории вероятности считается, что может произойти любое событие из s алгебры.

Расширение поля наблюдаемых событий на s алгебру связано с невозможностью получить основные результаты теории вероятности без понятия s алгебры.

Определение вероятностного пространства.

Вероятностным пространством называется тройка (W, s, P), где

W пространство элементарных событий, построенное для данного испытания;

s sалгебра, заданная на W системе возможных событий, которая интересует исследователя, в результате проводимых испытаний;

P s аддитивная мера, т.е. s аддитивная неотрицательная функция, аргументами которой являются аргументы из s алгебры и удовлетворяющая трем аксиомам теории вероятности.

  1. . P(A) называется вероятностью наступления события A.

  2. Вероятность достоверного события равна 1 P(W)=1.

  3. Вероятность суммы несовместных событий равна сумме вероятностей

, .

k возможно бесконечное число.

Следствие:

Вероятность невозможного события равна 0.

По определению суммы имеет место неравенство W+V=W. W и V несовместные события.

По третей аксиоме теории вероятности имеем:

P(W+V)=P(Q)=P(U)=1

Учебная работа № 1198. Теория вероятности и мат статистика