Учебная работа № 1166. Дифференциальные уравнения

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (3 оценок, среднее: 4,67 из 5)
Загрузка...
Контрольные рефераты

Учебная работа № 1166. Дифференциальные уравнения

Основные понятия и определения.

Дифференциальное уравнение называется соотношение вида

связывающее независимую переменную х, ее фцию у, а также производные этой функции до нго порядка включительно. если в уравнении 1 входит одна независимая переменная, то такое диф. ур. называется обыкновенным, если в уравнение 1 входит несколько независимых переменных, то такое диф. ур. называется уравнение в частных производных. Порядком дифференциального уравнения называется порядок старшей производной, входящей в это уравнение.

Решением уравнения 1 называется нраз дифференцированная функция y=f(x), которая при подстановке в уравнение 1 обращает его в тождество. В простейшем случае определение функции y=f(x) сводится к вычислению интеграла, а поэтому процесс нахождения решения диф. уравн. называется его интегрированием, а график фции y=f(x) называется интегральной кривой диф. уравн. Т.к. при интегрировании функции получается множество решений, отличающихся друг от друга постоянным коэффициентом, то любое диф. уравн. также будет иметь множество решений, графически определяемых семейством интегральных кривых. Общим решением (общим интегралом) диф. уравн. нго порядка называется его решение явно (неявно) выраженное относительно фции у и содержащей ннезависимых производных постоянных.

Независимость констант СI означает,что ни одна из них не может быть выражена через остальные, а следовательно число этих констант не может быть уменьшено на единицу.

Частным решением интеграла диф. уравн. нго понрядка называется такое его решение, в котором произвольным константам Сi присвоены конкретные значения. это конкретные значения находятся из решения системы так называемых начальных условий

В этой системе правые части равенства представляют собой некоторые константы.

Диф. уравн нго порядка

Диф. уравн. 1го порядка имеет вид.

Если уравн. 1 разрешить относительно производной y’, то получают дифференциальное уравнение первого порядка разрешенное относительно y’

Диф. уравн. 2 можно представить в так называемой диф. форме

P и Q многочлены зависящие от х и у дифференциальное уравнение описываемое соотношением 1,2,3 в частом случае могут не зависеть от независимой переменной х или ее фции у, но обязательно включают производную y’.

Диф. уравн. с разделяющимися переменными

Диф. ур с раздел переменными называются уравнения вида

Где f1 (х) и f2 (х) зависят только от х, и f1 (у) и f2 (у), разделим обе части уравнения (1) на f1 (у) и f1 (х) получим

(3)

Уравнения (3) и (3¢) называются общими интегралами исходного диф. уравнения.

ОДНОРОДНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ.

Определение 1. Фция ¦(x,y) назся однородной функцией нго порядка относительно переменных x и y, если для любого t, отличного от нуля справедливо тождество ¦(tx; ty)=t^n ¦(x;y)

ОДНОРОДНАЯ ФУНКЦИЯ НУЛЕВОГО ПОРЯДКА.

Отношение двух однородных функций одинакового порядка есть однородная функция нулевого порядка.

Определение 2. Диф. уравнение P(x;y)dx + Q(x;y)dy=0 (1) является однородным уравнением , если функции P(x;y) и Q(x;y) являются однородными функциями одного и того же порядка.

Разрешим уравнение (1) относительно производной

dy/dx=P(x;y)/Q(x;y)

Производная является однородной функцией нулевого порядка.

Определение 3. Диф. уравнение у¢=¦(x;y) (2) назся однородным, если его правая часть ¦(x;y) является однородной функцией нулевого порядка относительно своих аргументов.

Однородное диф. уравнение приводится к диф. уравнениям с разделяющимися переменными подстановкой t=y/x ; y=t*x

При такой подстановке правая часть уравнения (2) ¦(tx;ty) = ¦(1/x*x;1/x*y)= ¦(1;y/x) = j(y/x) =j(t)

t=1/x

y/x=t

следовательно однородную функцию ¦(x;y) можно представить как функцию j от аргумента t=y/x

y¢= t¢*x+t

t¢*x+t=j(t)

dt/dx*x=j(t)t

dt/(j(t)t)=dx/x

ò dt/(j(t)t)=ò dx/x + c

общее решение уравнения 2.

ДИФ. УРАВНЕНИЕ В ПОЛНЫХ ДИФФЕРЕНЦИАЛАХ.

Д.У. P(x;y)dx + Q(x;y)dy=0 (1)

назся уравнением в полных дифференциалах если левая часть этого уравнения представляет собой полный дифференциал некоторой функции U(x;y)/

Необходимым и достаточным условием, того ,что уравнение (1) будет уравнением в полных дифференциалах, выполнение равенства

dP/dy=dQ/dx

Действительно, если левая часть равенства (1) есть полный диф. функции U(x;y) ,то dU(x;y)=P(x;y)+Q(x;y)dy

dU(x;y)= dU/dx*dx + dU/dy*dy (3)

dU(x;y)= P(x;y)dx+Q(x;y)dy (4)

Сравнивая рав. 3 и 4

dU/dx=P(x;y) (5)

dU/dy=Q(x;y) (6)

dP/dy=d^2U/dxdy

dQ/dx=d^2U/dydx

Т.к для диф. фции U(x;y) частная произв. 2го порядка не зависят от порядка диф., то мы приходим к равенству (2). С учётом равенства(30 равенство (1) может быть зависимо как

dU(x;y)=0 (7)

U(x;y)=c (8)

Это и есть общее решение нашего д.у.

Для отыскания фции U воспользуемся флой (5)

dU=P(x;y)dx

U= ò(x;y)dx+C=òP(x;y)dx + j(y) (9)

Для отыскания фции j(y) продифференцируем равенство (9) по переменной y

dU/dy=d/dyòp(x;y)dx+j¢(y)

j¢(y)=Q(x;y) d/dyòp(x;y)dx (10)

Проинтегрировав левую и правую часть рав. (10) мы получим значение фции j(y):

j(y)=ò(Q(x;y)d/dy*òP(x;y)dx)dy=C (11)

Подставим равенство (11) в (9)

òP(x;y)dx=ò(Q(x;y)d/dy*òP(x;y)dx)dy +C=C

òP(x;y)dx+ò(Q(x;y)d/dy*òP(x;y)dx)dy=C (12)

C=CC получаем общее решение диф. уравнения.

Замечание.

В фле (12) знаки частной производной и дифференциала можно поменять местами.

Фцию U можно было определить из равенства(6)

Учебная работа № 1166. Дифференциальные уравнения