Учебная работа № 1114. Высшая математика
Основные теоремы и определения
Определение. Сумма членов бесконечной числовой последовательности называется числовым рядом.
При этом числа будем называть членами ряда, а un – общим членом ряда.
Определение. Суммы , n = 1, 2, … называются частными (частичными) суммами ряда.
Таким образом, возможно рассматривать последовательности частичных сумм ряда S1 , S2 , …,Sn , …
Определение. Ряд называется сходящимся, если сходится последовательность его частных сумм. Сумма сходящегося ряда – предел последовательности его частных сумм.
Определение. Если последовательность частных сумм ряда расходится, т.е. не имеет предела, или имеет бесконечный предел, то ряд называется расходящимся и ему не ставят в соответствие никакой суммы.
Свойства рядов.
1) Сходимость или расходимость ряда не нарушится если изменить, отбросить или добавить конечное число членов ряда.
2) Рассмотрим два ряда
Теорема. Если ряд
3) Рассмотрим два ряда
Теорема. Если ряды
Разность двух сходящихся рядов также будет сходящимся рядом.
Сумма сходящегося и расходящегося рядов будет расходящимся рядом.
О сумме двух расходящихся рядов общего утверждения сделать нельзя.
При изучении рядов решают в основном две задачи: исследование на сходимость и нахождение суммы ряда.
Критерий Коши.
(необходимые и достаточные условия сходимости ряда)
Для того, чтобы последовательность
1.3 Определение. Ряд
Теорема. (Критерий Коши равномерной сходимости ряда)
Для равномерной сходимости ряда
выполнялось бы для всех х на отрезке [a,b].
Теорема. (Признак равномерной сходимости Вейерштрасса)
(Карл Теодор Вильгельм Вейерштрасс (1815 – 1897) – немецкий математик)
Ряд
т.е. имеет место неравенство:
Еще говорят, что в этом случае функциональный ряд
ряд
Интегральный признак Коши.
Если j(х) – непрерывная положительная функция, убывающая на промежутке [1;¥), то ряд j(1) + j(2) + …+ j(n) + … =
Пример. Ряд
Следствие. Если f(x) и j(х) – непрерывные функции на интервале (a, b] и
Степенные ряды.
Определение. Степенным рядом называется ряд вида
Для исследования на сходимость степенных рядов удобно использовать признак Даламбера.
Пример. Исследовать на сходимость ряд
Применяем признак Даламбера:
Получаем, что этот ряд сходится при
Теперь определим сходимость в граничных точках 1 и –1.
При х = 1:
При х = 1:
1 теорема Абеля.
(Нильс Хенрик Абель (1802 – 1829) – норвежский математик)
Теорема. Если степенной ряд
Доказательство. По условию теоремы, так как члены ряда ограничены, то
где k некоторое постоянное число. Справедливо следующее неравенство:
Из этого неравенства видно, что при x<x1 численные величины членов нашего ряда будут меньше ( во всяком случае не больше ) соответствующих членов ряда правой части записанного выше неравенства, которые образуют геометрическую прогрессию. Знаменатель этой прогрессии
Поэтому на основании признака сравнения делаем вывод, что ряд
Таким образом, если степенной ряд
Следствие. Если при х = х1 ряд расходится, то он расходится для всех
Таким образом, для каждого степенного ряда существует такое положительное число R, что при всех х таких, что
Отметим, что этот интервал может быть как замкнутым с одной или двух сторон, так и не замкнутым.
Радиус сходимости может быть найден по формуле:
Определение. Тригонометрическим рядом называется ряд вида:
или, короче,
Действительные числа ai , bi называются коэффициентами тригонометрического ряда.
Определение. Тригонометрическим рядом называется ряд вида:
или, короче,
3,3
2 Теорема Абеля. Если степенной ряд
Признак сравнения рядов с неотрицательными членами.
Пусть даны два ряда
Теорема. Если un £vn при любом n, то из сходимости ряда
Доказательство. Обозначим через Sn и sn частные суммы рядов
Пример. Исследовать на сходимость ряд
Т.к.
Пример. Исследовать на сходимость ряд
Т.к.
Также используется следующий признак сходимости:
Теорема. Если
Разложение функций в степенной ряд имеет большое значение для решения различных задач исследования функций, дифференцирования, интегрирования, решения дифференциальных уравнений, вычисления пределов, вычисления приближенных значений функции.
Возможны различные способы разложения функции в степенной ряд. Такие способы как разложение при помощи рядов Тейлора и Маклорена были рассмотрены ранее. (См. Формула Тейлора. )
Существует также способ разложения в степенной ряд при помощи алгебраического деления. Это – самый простой способ разложения, однако, пригоден он только для разложения в ряд алгебраических дробей
Рассмотрим способ разложения функции в ряд при помощи интегрирования.
С помощью интегрирования можно разлагать в ряд такую функцию, для которой известно или может быть легко найдено разложение в ряд ее производной.
Находим дифференциал функции
2) Теорема о почленном интегрировании ряда.
Равномерно сходящийся на отрезке [a,b] ряд с непрерывными членами можно почленно интегрировать на этом отрезке, т.е. ряд, составленный из интегралов от его членов по отрезку [a,b] , сходится к интегралу от суммы ряда по этому отрезку.
3) Теорема о почленном дифференцировании ряда.
Если члены ряда
На основе того, что сумма ряда является некоторой функцией от переменной х, можно производить операцию представления какой – либо функции в виде ряда (разложения функции в ряд), что имеет широкое применение при интегрировании, дифференцировании и других действиях с функциями.
На практике часто применяется разложение функций в степенной ряд.
Ряд Тейлора.
(Пьер Альфонс Лоран (1813 – 1854) – французский математик)
Функция f(z), аналитическая в круге
Коэффициенты ряда вычисляются по формулам:
Степенной ряд с коэффициентами такого вида называется рядом Тейлора.
Правая часть линейного неоднородного дифференциального уравнения имеет вид:
где
Тогда частное решение ищется в виде:
Здесь Q(x) многочлен той же степени, что и P(x), но с неопределенными коэффициентами, а r – число, показывающее сколько раз число a является корнем характеристического уравнения для соответствующего линейного однородного дифференциального уравнения.
Правая часть линейного неоднородного дифференциального уравнения имеет вид:
Здесь Р1 (х) и Р2 (х) – многочлены степени m1 и m2 соответственно.
Тогда частное решение неоднородного уравнения будет иметь вид:
где число r показывает сколько раз число
Заметим, что если правая часть уравнения является комбинацией выражений рассмотренного выше вида, то решение находится как комбинация решений вспомогательных уравнений, каждое из которых имеет правую часть, соответствующую выражению, входящему в комбинацию.
Т.е. если уравнение имеет вид:
Предельный признак Даламбера.
Предельный признак Даламбера является следствием из приведенного выше признака Даламбера.
Если существует предел
Пример. Определить сходимость ряда
Вывод: ряд сходится.
Пример. Определить сходимость ряда
Вывод: ряд сходится.
Нормальные системы обыкновенных дифференциальных уравнений.
Определение. Совокупность соотношений вида:
где х независимая переменная, у1 , у2 ,…,уn – искомые функции, называется системой дифференциальных уравнений первого порядка.
Определение. Система дифференциальных уравнений первого порядка, разрешенных относительно производных от неизвестных функций называется нормальной системой дифференциальных уравнений.
Такая система имеет вид:
Для примера можно сказать, что график решения системы двух дифференциальных уравнений представляет собой интегральную кривую в трехмерном пространстве.
Теорема. (Теорема Коши). Если в некоторой области (n1) –мерного пространства функции
системы дифференциальных уравнений вида (1), определенное в некоторой окрестности точки х0 и удовлетворяющее начальным условиям
Определение. Общим решением системы дифференциальных уравнений вида (1) будет совокупность функций
Ряды с неотрицательными членами.
При изучении знакопостоянных рядов ограничимся рассмотрением рядов с неотрицательными членами, т.к. при простом умножении на –1 из этих рядов можно получить ряды с отрицательными членами.
Теорема. Для сходимости ряда
Признак сравнения рядов с неотрицательными членами.
Пусть даны два ряда
Теорема. Если un £vn при любом n, то из сходимости ряда
Доказательство. Обозначим через Sn и sn частные суммы рядов
Также используется следующий признак сходимости:
Теорема. Если
Признак Коши. (радикальный признак)
Если для ряда
то ряд
то ряд
Следствие. Если существует предел
Интегральный признак Коши.
Если j(х) – непрерывная положительная функция, убывающая на промежутке [1;¥), то ряд j(1) + j(2) + …+ j(n) + … =
Пример. Ряд
Следствие. Если f(x) и j(х) – непрерывные функции на интервале (a, b] и
Знакочередующиеся ряды.
Знакочередующийся ряд можно записать в виде:
где
Признак Лейбница.
Если у знакочередующегося ряда
Признаки Даламбера и Коши для знакопеременных рядов.
Пусть
Признак Даламбера. Если существует предел
Признак Коши. Если существует предел
Пример. Разложить в ряд функцию
при помощи интегрирования.
При
Разложение в ряд функции
Тогда получаем:
Окончательно получим:
Абсолютная и условная сходимость рядов.
Рассмотрим некоторый знакопеременный ряд (с членами произвольных знаков).
и ряд, составленный из абсолютных величин членов ряда (1):
Теорема. Из сходимости ряда (2) следует сходимость ряда (1).
Доказательство. Ряд (2) является рядом с неотрицательными членами. Если ряд (2) сходится, то по критерию Коши для любого e>0 существует число N, такое, что при n>N и любом целом p>0 верно неравенство:
По свойству абсолютных величин:
То есть по критерию Коши из сходимости ряда (2) следует сходимость ряда (1).
Определение. Ряд
Очевидно, что для знакопостоянных рядов понятия сходимости и абсолютной сходимости совпадают.
Определение. Ряд
Свойства абсолютно сходящихся рядов.
1) Теорема. Для абсолютной сходимости ряда
Следствие. Условно сходящийся ряд является разностью двух расходящихся рядов с неотрицательными стремящимися к нулю членами.
2) В сходящемся ряде любая группировка членов ряда, не изменяющая их порядка, сохраняет сходимость и величину ряда.
3) Если ряд сходится абсолютно, то ряд, полученный из него любой перестановкой членов, также абсолютно сходится и имеет ту же сумму.
Перестановкой членов условно сходящегося ряда можно получить условно сходящийся ряд, имеющий любую наперед заданную сумму, и даже расходящийся ряд.
4) Теорема. При любой группировке членов абсолютно сходящегося ряда (при этом число групп может быть как конечным, так и бесконечным и число членов в группе может быть как конечным, так и бесконечным) получается сходящийся ряд, сумма которого равна сумме исходного ряда.
5) Если ряды
Если же производить перемножение условно сходящихся рядов, то в результате можно получить расходящийся ряд.
Тригонометрический ряд.
Определение. Тригонометрическим рядом называется ряд вида:
или, короче,
Действительные числа ai , bi называются коэффициентами тригонометрического ряда.
Если ряд представленного выше типа сходится, то его сумма представляет собой периодическую функцию с периодом 2p, т.к. функции sinnx и cosnx также периодические функции с периодом 2p.
Пусть тригонометрический ряд равномерно сходится на отрезке [p; p], а следовательно, и на любом отрезке в силу периодичности, и его сумма равна f(x).
Определим коэффициенты этого ряда.
Для решения этой задачи воспользуемся следующими равенствами:
Справедливость этих равенств вытекает из применения к подынтегральному выражению тригонометрических формул. Подробнее см. Интегрирование тригонометрических функций.
Т.к. функция f(x) непрерывна на отрезке [p; p], то существует интеграл
Получаем:
Далее умножаем выражение разложения функции в ряд на cosnx и интегрируем в пределах от p до p.
Отсюда получаем:
Аналогично умножаем выражение разложения функции в ряд на sinnx и интегрируем в пределах от p до p.
Получаем:
Выражение для коэффициента а0 является частным случаем для выражения коэффициентов an .
Таким образом, если функция f(x) – любая периодическая функция периода 2p, непрерывная на отрезке [p; p] или имеющая на этом отрезке конечное число точек разрыва первого рода, то коэффициенты
существуют и называются коэффициентами Фурье для функции f(x).
Определение. Рядом Фурье для функции f(x) называется тригонометрический ряд, коэффициенты которого являются коэффициентами Фурье. Если ряд Фурье функции f(x) сходится к ней во всех ее точках непрерывности, то говорят, что функция f(x) разлагается в ряд Фурье.
Функциональные ряды.
Определение. Частными (частичными) суммами функционального ряда
Определение. Функциональный ряд
Определение. Совокупность всех значений х, для которых сходится ряд
Определение. Ряд
Теорема. (Критерий Коши равномерной сходимости ряда)
Для равномерной сходимости ряда
выполнялось бы для всех х на отрезке [a,b].
Определение. Рядом Фурье для функции f(x) называется тригонометрический ряд, коэффициенты которого являются коэффициентами Фурье. Если ряд Фурье функции f(x) сходится к ней во всех ее точках непрерывности, то говорят, что функция f(x) разлагается в ряд Фурье.
Достаточные признаки разложимости в ряд Фурье.
Теорема. (Теорема Дирихле) Если функция f(x) имеет период 2p и на отрезке
[p;p] непрерывна или имеет конечное число точек разрыва первого рода, и отрезок
[p;p] можно разбить на конечное число отрезков так, что внутри каждого из них функция f(x) монотонна, то ряд Фурье для функции f(x) сходится при всех значениях х, причем в точках непрерывности функции f(x) его сумма равна f(x), а в точках разрыва его сумма равна
Функция f(x), для которой выполняются условия теоремы Дирихле называется кусочно – монотонной на отрезке [p;p].
Теорема. Если функция f(x) имеет период 2p, кроме того, f(x) и ее производная f’(x) – непрерывные функции на отрезке [p;p] или имеют конечное число точек разрыва первого рода на этом отрезке, то ряд Фурье функции f(x) сходится при всех значениях х, причем в точках непрерывности его сумма равна f(x), а в точках разрыва она равна
Функция, удовлетворяющая условиям этой теоремы, называется кусочно – гладкой на отрезке [p;p].
Разложение в ряд Фурье непериодической функции.
Задача разложения непериодической функции в ряд Фурье в принципе не отличается от разложения в ряд Фурье периодической функции.
Допустим, функция f(x) задана на отрезке [a, b] и является на этом отрезке кусочно – монотонной. Рассмотрим произвольную периодическую кусочно – монотонную функцию f1 (x) c периодом 2Т ³ïbaï, совпадающую с функцией f(x) на отрезке [a, b].
f(x)
a 2T a a b a+2T a + 4T x
Таким образом, функция f(x) была дополнена. Теперь функция f1 (x) разлагается в ряд Фурье. Сумма этого ряда во всех точках отрезка [a, b] совпадает с функцией f(x), т.е. можно считать, что функция f(x) разложена в ряд Фурье на отрезке [a, b].
Таким образом, если функция f(x) задана на отрезке, равном 2p ничем не отличается от разложения в ряд периодической функции. Если же отрезок, на котором задана функция, меньше, чем 2p, то функция продолжается на интервал (b, a + 2p) так, что условия разложимости в ряд Фурье сохранялись.
Вообще говоря, в этом случае продолжение заданной функции на отрезок (интервал) длиной 2p может быть произведено бесконечным количеством способов, поэтому суммы получившихся рядов будут различны, но они будут совпадать с заданной функцией f(x) на отрезке [a,b]
Свойства равномерно сходящихся рядов.
1) Теорема о непрерывности суммы ряда.
Если члены ряда
2) Теорема о почленном интегрировании ряда.
Равномерно сходящийся на отрезке [a,b] ряд с непрерывными членами можно почленно интегрировать на этом отрезке, т.е. ряд, составленный из интегралов от его членов по отрезку [a,b] , сходится к интегралу от суммы ряда по этому отрезку.
3) Теорема о почленном дифференцировании ряда.
Если члены ряда
На основе того, что сумма ряда является некоторой функцией от переменной х, можно производить операцию представления какой – либо функции в виде ряда (разложения функции в ряд), что имеет широкое применение при интегрировании, дифференцировании и других действиях с функциями.
На практике часто применяется разложение функций в степенной ряд
Теорема. (Признак равномерной сходимости Вейерштрасса)
(Карл Теодор Вильгельм Вейерштрасс (1815 – 1897) – немецкий математик)
Ряд
т.е. имеет место неравенство:
Еще говорят, что в этом случае функциональный ряд
Ряды Фурье для функций любого периода.
Ряд Фурье для функции f(x) периода Т = 2l, непрерывной или имеющей конечное число точек разрыва первого рода на отрезке [l, l] имеет вид:
Для четной функции произвольного периода разложение в ряд Фурье имеет вид:
Для нечетной функции:
Теорема. (Теорема Дирихле) Если функция f(x) имеет период 2p и на отрезке
[p;p] непрерывна или имеет конечное число точек разрыва первого рода, и отрезок
[p;p] можно разбить на конечное число отрезков так, что внутри каждого из них функция f(x) монотонна, то ряд Фурье для функции f(x) сходится при всех значениях х, причем в точках непрерывности функции f(x) его сумма равна f(x), а в точках разрыва его сумма равна