Учебная работа № 2105. Лекции по матану (III семестр) переходящие в шпоры

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (6 оценок, среднее: 4,67 из 5)
Загрузка...
Контрольные рефераты

Учебная работа № 2105. Лекции по матану (III семестр) переходящие в шпоры

№1

1 Двойной интеграл

Рассмотрим в плоскости Оху замкнутую область D, ограниченную линией Г, являющейся замкнутой непрерывной кривой. z = l(P) = f(x,y), P= (x,y) ÎD – произвольные фции определенные и ограниченные на D. Диаметром области D наз. наибольшее расстояние между граничными точками. Область D разбивается на n частых областей D1…Dn конечным числом произв. кривых. Если S – площадь D, то DSi – площадь каждой частной области. Наибольший из диаметров областей обозн l. В каждой частной области Di возьмем произв. точку Pi (xi , Di) ÎDi, наз. промежуточной. Если диаметр разбиения Dl 0 , то число n областей Di¥. Вычислим зние фции в промежуточных точках и составим сумму:I = f(xi, Di)DSi (1), наз. интегральной суммой фции. Фция f(x,y) наз. интегрируемой в области D если существует конечный предел интегральной суммы.

Двойным интегралом фии f(x,y) по области D наз. предел интегральной суммы при l 0. Обозн:

или

2 Понятие числового

ряда и его суммы

Пусть задана бесконечная последовательность чисел u1, u2, u3…

Выражение u1+ u2+ u3…+ un (1) называется числовым рядом, а числа его составляющие членами ряда.

Сумма конечно числа n первых членов ряда называется nной частичной суммой ряда: Sn = u1+..+un

Если сущ. конечный предел: , то его называют суммой ряда и говорят, что ряд сходится, если такого предела не существует, то говорят что ряд расходится и суммы не имеет.

№ 2

1 Условие существования

двойного интеграла

Необходимое, но недостаточное:

Фция f(x,y) интегрируема на замкнутой области D, ограничена на D.

1 достаточный признак существования: если фция f(x,y) непрерывна на замкнутой, огр. области D, то она интегрируема на D.

2 достаточный признак существования: если фция f(x,y) ограничена в замкнутой области D с какойто границей и непрерывна в ней за исключением отдельных точек и гладки=х прямых в конечном числе где она может иметь разрыв, то она интегрируема на D.

2 Геометрический и

арифметический ряды

Ряд состоящий из членов бесконечной геометрической прогрессии наз. геометрическим: или

а+ а×q +…+a×qn 1

a¹ 0 первый член q – знаменатель. Сумма ряда:

следовательно конечный предел последовательности частных сумм ряда зависит от величины q

Возможны случаи:

1 |q|<1

т. е. ряд схдся и его сумма 2 |q|>1 и предел суммы так же равен бесконечности

т. е. ряд расходится.

3 при q = 1 получается ряд: а+а+…+а… Sn = n×a ряд расходится

4 при q¹1 ряд имеет вид: аа+а … (1)n 1 aSn=0 при n четном, Sn=a при n нечетном предела частных суммы не существует. ряд расходится.

Рассмотрим ряд из бесконечных членов арифметической прогрессии:u – первый член, d – разность. Сумма ряда

при любых u1 и d одновременно ¹ 0 и ряд всегда расходится.

№3

1 Основные свва 2ного интеграла

1. Двойной интеграл по области D = площади этой области.

2. Если область G содержится в Д, а фция ограничена и интегрируема в Д, то она интегрируема и в G.

3. Аддитивное свво. Если область Д при помощи кривой г разбивают на 2 области Д1 и Д2, не имеющих общих внутренних точек, то:

4. константы выносятся за знак интеграла, а сумму в фции можно представить в виде суммы интегралов:

5. Если фции f и g интегрируемы в Д, то их произведение также интегрируемо в Д. Если g(x,y) ¹ 0 то и f/g интегрируема в Д.

6. Если f(x,y) и g(x,y) интегрируемы в Д и всюду в этой области f(x,y) <= g(x,y), то:

В частности: g(x,y) >=0 то и

7. Оценка абсолютной величины интеграла: если f(x,y) интегрируема в Д, то и |f(x,y)| интегрир. в Д причем

обратное утверждение неверно, итз интегрируемости |f| не следует интегрируемость f.

8. Теорема о среднем значении.

Если фция f(x,y) интегр. в Д., то в этой области найдется такая точка (x, h) Î Д, что:

(2), где S – площадь фигуры Д. Значение f(x, h) опред по фле (2) наз. средним значением фции f по области Д.

2 Сва сходящихся рядов

Пусть даны два ряда: u1+u2+…un =(1) и v1+v2+…vn = (2)

Произведением ряда (1) на число lÎR наз ряд: lu1+lu2+…lun =(3)

Суммой рядов (1) и (2) наз ряд:

(u1+v1)+(u2+v2)+…(un+vn) = (для разности там только появица)

Т1 Об общем множителе

Если ряд (1) сходится и его сумма = S, то для любого числа l ряд =l× тоже сходится и его сумма S’ = S×l Если ряд (1) расходится и l¹ 0, то и ряд тоже расходится. Т. е. общий множитель не влияет на расходимости ряда.

Т2 Если ряды (1) и (2) сходятся, а их суммы = соотв S и S’, то и ряд: тоже сходится и если s его сумма, то s = S+S’. Т. е. сходящиеся ряды можно почленно складывать и вычитать. Если ряд (1) сходится, а ряд (2) расходится, то их сумма(или разность) тоже расходится. А вот если оба ряда расходятся. то ихняя сумма (или разность)может как расходится (если un=vn) так и сходиться (если un=¹vn)

Для ряда (1) ряд называется n – ным остатком ряда. Если нный остаток ряда сходится, то его сумму будем обозначать: rn =

Т3 Если ряд сходится, то и любой его остаток сходится, если какой либо остаток ряда сходится, то сходится и сам ряд. Причем полная сумма = частичная сумма ряда Sn + rn

Изменение, а также отбрасывание или добавление конечного числа членов не влияет на сходимость (расходимость) ряда.

№4

1 Сведение

2ного интеграла к повторному

Пусть у1(х), у2(х) непрерывны на отрезке [a, b], у1(х)<= у2(х) на всем отрезке.

D={x,y}: a<=x<=b; y1(x)<=y<=y2(x)

Отрезок [a,b] – проекция Д на ось ох. Для такой области людбая прямая, параллельная оу и проходящая через внутреннюю точку области Д пересекает границу области не более чем в 2 точках. Такая область наз. правильной в направлении оси оу.

Если фция f(x,y) задана на Д и при каждом х Î [a,b] непрерывна на у , на отрезке, [y1(x),y2(x)], то фция F(x) = , наз. интегралом, зависящим от параметра I, а интеграл : , наз повторным интегралом от фции f(x,y) на области Д. Итак, повторный интеграл вычисляется путем последовательного вычисления обычных определенных интегралов сначала по одной., а затем по другой переменной.

2 Необходимый

признак сходимости рядов

Если ряд сходится, то предел его общего члена равен нулю:

Докво:

Sn=u1+u2+…+un

Sn1\u1+u2+…+un1

un=SnSn1, поэтому:

Сей признак является только необходимым, но не является достаточным., т. е. если предел общегоь члена и равен нулю совершенно необязательно чтобы ряд при этом сходился. Следовательно, вот сие условие при его невыполнении является зато достаточным условием расходимости ряда.

№5

1 Замена переменных в двойном интеграле.

Общий случай криволинейных координат

Пусть существует фция f(x,y) интегр на области Д, можно прямолинейные координаты x, y с помощью формул преобразования перейти к криволинейным: x = x(u,v), y=y(u,v), где эти фции непрерывные вместе с частными производными первого порядка, устанавливают взаимно однозначное и в обе стороны непрерывное соответствие между точками плоской области Д и области Д’ и определитель преобразования, наз. Якобианом не обращается в 0:если это выполняется можно пользоваться флой:

2 Интегральный признак

сходимости ряда. Ряд Дирихле

Т1 Пущай дан рядт (1), члены которого неотрицательны, и не возрастают: u1>=u2>=u3…>=un

Если существует фция f(x) неотрицательная, непрерывная и не возрастающая на [1,+¥] такая, что f(n) = Un, «nÎN, то для сходимости ряда (1) необходимо унд достаточно, чтобы сходился несобственный интеграл:, а для расходимости достаточно и необходимо чтобы сей интеграл наоборот расходился (ВАУ!).

Применим сей признак для исследования ряда Дирихле: Вот он: , aÎR Сей ряд называют обобщенным гармоническим рядом, при a >0 общий член оного un=1/na 0 и убывает поэтому можно воспользоваться интегральным признаком, функцией здеся будет фция f(x)=1/xa (x>=1)сия фция удовлетворяет условиям теоремы 1 поэтому сходимость (расходимости) ряда Дирихле равнозначна сходимости расходимости интеграла:

Возможны три случая:

1 a>1,

Интеграл а потому и ряд сходится.

2 0<a<1,

Интеграл и ряд расходится

3 a=1,

Интеграл и ряд расходится

№ 6

1 Двойной интеграл

в полярных координатах

Переход к полярным координатам частный случай замены переменных.

Луч, проходящий из произв точки О имеет на плоскости полярные координаты A(r, j) где r = |ОA | расстояние от О до А полярный радиус. j = угол между векторами ОА и ОР – полярный угол отсчитываемой от полярной оси против часовой стрелки. всегда 0<=r<=+¥, 0<=j <=2p .

Зависимость между прямоугольными и полярными координатами: x = r×cosj , y = r×sinj .

Якобиан преобразования будет равен:

И формула при переходе примет вид:

2 Признаки сравнения

Т(Признаки сравнения)

Пущай и ряды с неотрицательными членами и для любого n выполняется нерво:

un<=vn (1)тогда

1 Если ряд vn сходится, то сходится и ряд un

2 если ряд un расходится, то расходится и ряд vn. Т. е. говоря простыми русскими словами для простых русских людей (ну для дураков вроде тебя): Из сходимости ряда с большими членами следует сходимость ряда с меньшими, а из расходимости ряда с меньшими членами следует расходимости ряда с большими и не наоборот!!!

Причем можно требовать, чтобы неравенство (1) выполнялось не для всех номеров n, а начиная с некоторого n0, т. е. для некоторых номеров меньших n0 неравенство (1) может и не выполняться. При применении сего признака сравнения удобно в качестве ряда сравнения брать ряд Дирихле или геометрический ряд, с которыми и так уже все ясно.

Т3 Засекреченная

Если сущ вышеописанные неотр. ряды, то если сущ предел:

(0<k<+¥) тада оба эти ряда сходятся.

№7

1 Вычисление

площади плоской области

с помощью 2ного интеграла

Если Д правильная в направлении оу a<=x<=b, y1(x)<=y<=y2(x), то

Если Д огр линиями в полярных координатах, то

2 Признаки Даламбера и Коши

Т(Признак Далембера)

Пущай для ряда un с положит членами существует предел:

, то

1 Если k<1, то ряд сходится

2 Если k>1 ряд расходится

Т(Признак Коши)

Пусть для того же самого ряда (т. е. положительного) существует предел:, тогда

1 Если k<1, то ряд сходится

2 Если k>1 ряд расходится

А вот если эти все пределы по Коши и дедушке Даламберу равны 1, то о сходимости или расходимости ряда ничего сказать низзя. Вот низзя и все тут. Вот.

№8

1 Вычисление объема

с помощью 2ного интеграла

Рассматривая в пространстве тело Р, огр снизу плоскостью оху, сверху z = f(x,y), кот проектируется в Д, сбоку границей области Д, называемое криволинейным цилиндром. Объем этого тела вычисляют по формуле:

если f(x,y)<=0 в Д тор тело находится под плоскостью оху. Его объем равен объему цилиндрического тела. огр сверху ф

Учебная работа № 2105. Лекции по матану (III семестр) переходящие в шпоры