Учебная работа № 1943. Замечательное уравнение кинематики

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (6 оценок, среднее: 4,67 из 5)
Загрузка...

Учебная работа № 1943. Замечательное уравнение кинематики

Ю. Архипов

Тарту2006.

Резюме.

В предлагаемой статье рассмотрена возможность расширения сферы применения кинематических уравнений для решения задач механики. Показана возможность переноса метода составления простейших уравнений движения, на основе дифференциальных определений физических величин, в других разделах физики. Рассматриваются зависимости времени от координат, скоростей, ускорений, то есть обратные задачи кинематики, которые редко встречаются в учебниках механики.

В большинстве учебников по механике раздел кинематики ограничивается определениями траектории, системы координат, перемещения , скорости v=dx/dt, ускорения a=dv/dt и выводом формул пути для средней, мгновенной скорости, пути для равноускоренного движения X=Xo+v*t+a*t^2/2. Оказывается: из формул, определяющих скорость v=dx/dt и ускорение a=dv/dt, получается замечательная пропорция v*dv = a*dx , то есть дифференциальное уравнение с разделяемыми переменными. Область ее применения оказывается неожиданно обширной. По аналогии с выводом этого уравнения, можно вывести, подобные ему, дифференциальные уравнения вращательного движения, движения по кругу и других физических процессов, для которых даны определения физической величины Y(x), ее первой y'(x) и второй y»(x) производных. Из определений мгновенных скорости и ускорения получаются следствия: dv/dx = a/v, dt = dx/v(x), x(t) = 1/t(x), применение которых редко встречается в примерах решения задач по механике.

Вывод закона сохранения механической энергии. Умножим обе части уравнения на постоянную величину m, то есть массу и проинтегрируем уравнение. Получим m*v^2/2 = m*a*x. Выразив уравнение в определенных интегралах, получим полную формулу закона сохранения энергии. Кстати, получили в левой части формулу кинетической энергии, в правой потенциальной. Для вращательного движения, аналогично из определений угловой скорости w=df/dt и углового ускорения e=dw/dt получаем пропорцию, умножив на постоянные массу, радиус в квадрате и проинтегрировав, получаем формулу закона сохранения m*(w*R)^2/2 = m*e*R^2*f.

***Алгоритмы решения задач на основе уравнения.***

* Если известна зависимость ускорения от координат a(x), то уравнение примет вид v^2(x)=2*Integr(a(x)*dx). Например: a(x)= K*x > v^2(x)= 2*K*Integr(x*dx) a(x)= G/x^2 > v^2(x)= 2*G*Integr(dx/x^2) 1. Находим скорость v(x)=(2*Integr(a(x)*dx))^0,5 2. Находим время t(x)=Integr(dx/v(x)) 3. Находим формулу пути, как обратную функцию x(t)=1/t(x). * Если известна зависимость ускорения от скорости a(v), то она переносится в левую часть уравнения. Например: a(v)=gk*v > dv/gkv= dx a(v)=gk*v^2 > dv/gkv^2= dx 1. Находим зависимость x(v), обратную функцию v(x)=1/x(v) 2. Находим зависимости t(x)=Integr(dx/v(x)) 3. Находим формулу пути, как обратную функцию x(t)=1/t(x). * Усли известна зависимость v(x), то, интегрируя, находим t(x)=Integr(dx/v(x)), если известна зависимость v(t), находим из нее первообразную X(t) и производную a(t). * Заметим мы не прибегаем здесь к теории дифференциальных уравнений, где даются в виде решений готовые функции для каждого вида уравнения, а сами, прямым интегрированием, находим эти функции. * Заметим это замечательное уравнение является шаблоном для подстановки в него известных функций при решении конкретных задач. При этом нужно решать полученные уравнения в определенных интегралах, чтобы учесть заданные начальные условия. В теоретической механике существуют похожие шаблоны в виде уравнений Лагранжа, уравнений Гамильтона и т.д.

****Примеры решения задач.****

* Найти время падения тела от состояния покоя, на расстоянии 6371 км от поверхности Земли, до ее поверхности. Дана зависимость а(х)=g/x^2, где x=(h+R)/R, g=10м/с^2, R=6371км. сопротивление атмосферы не учитывать.

Решение: находим v^2(x)= 2*Integr(g*dx/x^2)=(2*g*R*(1/x1/Xo))^0,5, находим t(x)=Int(dx/v(x))= (R/2g)^0,5*Xo^3/2*(pi/2arcsin((x/Xo)^0,5)+(x/Xo)*(Xo/x1)*0,5) Ответ: время падения t=2072c. Заметим: в учебниках чаще приводится сложный вывод времени через эллиптическую формулу, исходя из законов Кеплера.

* Найти период колебаний пружинного маятника, если известна зависимость a(x)=k*x/m.

Решение: находим v^2(x)=2*Integr(k/m)*x*dx=(k/m)*(Xo^2x^2) находим T=4* t(x)=4*Integr(dx/v(x))=2*Pi*(m/k) Заметим: в учебниках чаще приводится вывод времени, исходя из готовой функции x= A*sin(w*t), определяющей гармонические колебания.

Заключение.

Статья написана в кратком стиле, в предположении, что читателю знакомы условные обозначения использованных в формулах физических величин. Длина обозначена символом «х» для удобства восприятия ее как независимой переменной. Возможны некоторые ошибки, пусть читательрецензор их исправит, если статья покажется ему полезной.

Учебная работа № 1943. Замечательное уравнение кинематики