Учебная работа № 1912. Применение информатики, математических моделей и методов в управлении

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (6 оценок, среднее: 4,67 из 5)
Загрузка...
Контрольные рефераты

Учебная работа № 1912. Применение информатики, математических моделей и методов в управлении

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ

КАФЕДРА МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ, ПРОЦЕССОВ И ТЕХНОЛОГИЙ

РЕФЕРАТ

НА ТЕМУ: «ПРИМЕНЕНИЕ ИНФОРМАТИКИ, МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ И МЕТОДОВ В УПРАВЛЕНИИ»

По дисциплине: « в специальность»

Ижевск2003

3

I. 4

II. Применение математики в управлении 5

1. Общее представление об управлении. 5

а) Понятие об управлении 5

б) Виды задач управления 6

в) Понятие об исследовании операций 7

2. Оптимизация процесса управления. 8

а) Критерий качества управления 8

б) Ограничения, накладываемые на процесс управления 9

в) Постановка задачи оптимального управления 10

3. Математическое описание объекта управления. 10

а) Структура объекта управления 10

III. Применение информатики в управлении 12

1. Наука кибернетика 12

2. Автоматизированные системы управления (АСУ). 14

IV. Заключение 19

Список литературы 20

I.

Развитие производства в наше время характерно невиданными темпами научнотехнического прогресса. Ускорение темпов научнотехнического прогресса влечет за собой небывалый рост объемов производства и его концентрации. Возросшая сложность и динамичность производства, развитие специализации предприятий и кооперирование, сложная производственная структура, связи и взаимодействия, огромный объем вычислительных работ, связанных с планированием и регулированием хода производственного процесса, делают задачу координации работы производственных звеньев предприятий все более сложным и трудоемким делом. Огромное количество информации, которую необходимо качественно переработать и представить в виде планов, различного рода сводок, отчетов, рапортов и т. п., вызывает многократную перегрузку управленческого персонала. Однако это ни в какой мере не должно быть тормозом дальнейшего совершенствования управления современным промышленным предприятием.

Поскольку производительные силы находятся в постоянном движении, не может быть неизменной и система управления экономикой Она должна постоянно совершенствоваться, чтобы наилучшим образом отвечать возрастающим потребностям и новым задачам развития общественного производства. На основе изучения экономических законов люди постоянно совершенствуют практику плановой работы, принципы и методы научного управления народным хозяйством.

В последнее время становится все сложнее управлять какойлибо системой, полагаясь только на свою интуицию. Окружающий нас мир становится сложнее и сложнее, и чтобы не потеряться в результатах своей деятельности, человек вынужден прибегать к упрощению, обобщению и систематизированию информации с последующим ее использованием в виде математических моделей.

Но все равно даже при максимальном упрощении исследуемого объекта полученная картина зачастую очень сложна, и чтобы разобраться в ней человеческих возможностей уже не хватает. Тогда в дело вступает компьютерные системы, способные просчитывать входные данные, создавать модели и делать какиелибо прогнозы относительно объекта исследования. Применение информатики в управлении очень широко, она охватывает все те области, где требуется работа с большими объемами данных и она призвана освободить человека от рутинной работы, чтобы дать ему возможность заниматься творческой деятельностью. Как это происходит, я рассмотрел в своем реферате.

II. Применение математики в управлении

1. Общее представление об управлении.

а) Понятие об управлении

Повсюду в окружающем нас мире (природе, тех­нике, человеческом обществе) протекают различные процессы, характер которых зависит от множества сопутствующих им условий и факторов. Изменяя условия протекания процессов, человек может влиять на их ха­рактер, изменять их, приспосабливать к своим целям. Это вмешательство в естественный ход процесса, изме­нение естественного хода процесса и представляет собой сущность управления. Таким образом, можно сказать, что управление представляет собой такую организацию, которая обеспечивает достиже­ние определенных целей.

Для лучшего понимания существа процесса управле­ния рассмотрим пример собаки, преследующей зайца. Для того чтобы настичь зайца, собака должна опреде­ленным образом организовать свои действия, управлять ими. Следовательно, процесс преследования является процессом управления.

Началу преследования должно предшествовать появ­ление зайца, т. е. создание такой ситуации, при которой возникает определенная цель, достижение которой явля­ется или необходимым или желательным. Однако преж­де, чем начать преследование, собака должна оценить сложившуюся ситуацию и сопоставить ее со своими жела­ниями и возможностями. Оценка ситуации завершается принятием решения о том, следует пытаться догнать зайца или нет (заяц может оказаться далеко и погоня бес­полезна, собака может быть утомлена и т. п.). Только после того, как принято решение о преследовании, со­бака приступает к организации своего движения, ставя при этом цель догнать зайца за кратчайшее время или при наименьшей затрате сил.

В этом примере можно отчетливо различить четыре этапа, характерные для любого процесса управления:

  • появление цели,

  • оценка ситуации,

  • принятие решения

  • исполнение принятого решения.

Однако этап появления цели предшествует началу процесса управления и его мы исключим из рассмотрения. Учитывая также, что при управлении сложными процессами оценка ситуации производится на основе собранной и соответствующим образом обработанной информации, приходим к следу­ющим трем этапам процесса управления:

  • сбор и обработка информации с целью оценки сложившейся ситуации;

  • принятые решения о наиболее целесообразных действиях;

  • исполнение принятого решения.

Иногда бывает необходим еще четвертый этап: конт­роль исполнения решения.

Различные виды задач управления отличаются друг от друга способом и последовательностью выполнения этих операций.

б) Виды задач управления

Имеется много задач, в которых механизмы сбо­ра информации и исполнения принятого решения отра­ботаны настолько четко, что над ними можно совершен­но не задумываться при осуществлении процесса управ­ления. В таких задачах все рассмотрение процесса управления сводится, по существу, к рассмотрению толь­ко второго этапа. Подобные задачи получили название одноэтапных или одношаговых задач принятия решения. Однако такой подход в большинстве случаев являет­ся идеализацией и упрощением реального процесса управления. В действительности все этапы процесса управления находятся в тесной взаимосвязи и этап принятия решения требует более или менее детального рассмотрения возможных способов реализации принято­го решения. Так, для принятия решения об отказе от преследования зайца нужно убедиться, что преследова­ние бесполезно, а для этого нужно хотя бы грубо про­анализировать возможные способы преследования.

Иногда в подобных случаях процесс управления раз­бивается на несколько последовательных шагов, причем решение, принимаемое на какомлибо шаге, зависит от результатов выполнения решения предыдущего шага. Такие процессы называют многошаговыми процессами принятия решения.

Примером может служить процесс управления ракетой при запуске ее с Земли на Луну. Здесь могут быть выделены следующие шаги: вывод ракеты на околоземную орбиту, организация движения ракеты в направлении Луны, перевод ракеты па около­лунную орбиту, прилунение.

В данном примере отдельные шаги многошагового процесса управления получились вполне естественно. Однако во многих случаях разбиение сложного процесса управления на шаги с четким выделением всех этапов уп­равления на каждом шаге оказывается весьма трудной за­дачей. Так, в процессе преследования зайца приходится иметь дело с непрерывно меняющейся ситуацией, вызван­ной стремлением зайца уйти от преследования. Собака должна непрерывно оценивать эту ситуацию и непрерывно принимать все новые и новые решения, сообразуясь с изменяющейся ситуацией и не ожидая окончательных результатов выполнения предыдущих решений. В подобных задачах мы сталкиваемся с непрерывными динамическими процессами управления.

Из приведенного рассмотрения видно, насколько сложными и разнообразными могут быть задачи управ­ления. Однако мы в значительной степени недооценили бы трудность решения этих задач, если бы не учли того обстоятельства, что процессы управления протекают, как правило, в сложной окружающей обстановке. На протекание процессов управления оказывают влияние разнообразные внешние факторы, совокупность которых часто называют состоянием природы. Для того чтобы принять правильное решение о тех или иных действиях, нужно оценить результаты этих действий, а для этого необходимо знать характер ситуации, в которой эти действия предпринимаются.

Однако типичным для задач управления является случай, когда имеющаяся информация бывает или не­достаточна для точной оценки ситуации, или искажена посторонними факторами. Тем не менее, недостаточность информации не снимает задачи принятия решения. Осо­бенность задач управления именно в том и состоит, что решение должно быть обязательно принято независимо от того, в состоянии ли мы точно оцепить результаты, к которым приведет принятое решение.

Таким образом, в процессе управления возникает важная задача принятия решения в условиях, когда ин­формация о сложившейся ситуации или недостаточна, или искажена. Данная задача получила название зада­чи принятия решения в условиях неопределенности.

в) Понятие об исследовании операций

Отметим еще один специфический класс задач управления, которые связаны с деятельностью крупных промышленных предприятий и могут быть названы за­дачами организационноуправленческого характера.

До промышленной революции руководство мелким предприятием мог осуществлять всего один человек, ко­торый делал закупки, планировал и направлял работу, сбывал продукцию, нанимал и увольнял рабочих. Не­большие размеры предприятия позволяли ему прини­мать организационные решения, не прибегая к какимлибо научным методам и базируясь на своих знаниях, опыте, интуиции. Если некоторые из принятых решений были не наилучшими, то они или не приводили к боль­шому ущербу, или могли быть быстро исправлены.

Укрупнение промышленных предприятий сделало не­возможным осуществление административных функций одним человеком. Появились руководители производственных отделов, отделов сбыта, финансовых отделов, отделов кадров и др. Усиливающаяся механизация и автоматизация производства привела к дальнейшему расчленению административных функций. Так, производ­ственные отделы оказались разделенными на более мел­кие группы, занимающиеся вопросами эксплуатации и ремонта, контроля качества, планирования, снабжения, хранения готовой продукции и т. п.

Каждое отдельное специализированное подразделе­ние крупной организации выполняет определенную часть общей работы, руководствуясь общими целями предприятия. Однако у каждого специализированного подразделения возникают и свои собственные цели. Все эти цели не всегда согласуются, а иногда приходят в противоречие друг с другом.

В качестве примера мож­но рассмотреть проблему обеспечения предприятия за­пасами. Отдельное подразделение может быть заинтере­совано в значительном увеличении запасов на складе для обеспечения бесперебойного выпуска своей продук­ции. Но при ограниченном объеме складских помеще­ний это приводит к снижению запасов для других под­разделений. В результате возникает задача организаци­онноуправленческого типа — выработка такой стратегии в отношении запасов, которая была бы наиболее благо­приятна для всего предприятия в целом.

При решении подобного рода организационноуправ­ленческих задач необходимо очень тонкое понимание целей отдельных подразделений и такое их согласова­ние, чтобы они не приходили в противоречие ни друг с другом, ни с общими целями всего предприятия. Если при этом учесть, что принятие не наилучших решений в условиях крупного предприятия может принести не­малый ущерб, то становится ясно, что при решении ор­ганизационноуправленческих задач оказывается недо­пустимым базироваться только на личном опыте и здра­вом смысле. Необходимы научные методы.

Разработкой научных методов решения организаци­онноуправленческих задач занимается молодая науч­ная дисциплина, получившая название исследование опе­раций. В этой научной дисциплине под операцией пони­мается некоторое организационное мероприятие, прове­дение которого преследует определенную четко сфор­мулированную цель, например регламентацию хранимых на складе запасов. Должны быть заданы условия, харак­теризующие обстановку проведения мероприятия, в частности, потребности о запасах и ограничения на склад­ские помещения в рассмотренном примере. Целью иссле­дования операций является нахождение и научное обос­нование таких способов проведения мероприятия, кото­рые в некотором смысле являются наиболее выгодными.

Специфическая особенность задач организационноуправленческого типа состоит в том, что последствия то­го или иного способа их решения могут существенно отразиться на работе всего предприятия. Поэтому принятие окончательного решений всегда относится к ком­петенции ответственного лица, администратора, наделен­ного соответствующими правами, и выходит за рамки исследования операций. Исследование операций пресле­дует лишь цель дать в руки администратору обосно­ванные рекомендации по принятию решения.

Таким образом, исследование операций представля­ет собой научное направление, целью которого являют­ся разработка методов анализа целенаправленных дей­ствий (операций) и объективная сравнительная оценка возможных решений. Хотя исследование операций пред­ставляет собой самостоятельное научное направление, воз­никшее в годы второй мировой войны при решении за­дач ПВО в Англии (т. е. исторически раньше появления кибернетики) однако при решении отдельных задач оно широко применяет методы кибернетики.

2. Оптимизация процесса управления.

а) Критерий качества управления

Задачу управления мы будем в дальнейшем рас­сматривать как математическую задачу. Однако в отли­чие от многих других математических задач она имеет ту особенность, что допускает не одно решение, а мно­жество различных решений [Л. 42]. Это связано с тем, что в задачах управления имеется, как правило, много способов организации какоголибо процесса, которые приводят к достижению поставленной цели. Так, в про­цессе погони за зайцем собака может поразному орга­низовать характер своего движения, при запуске раке­ты на Луну можно выбирать различные траектории для полета ракеты и т. п. Поэтому задачу управления мож­но было бы ставить как задачу нахождения хотя бы одного из возможных способов достижения поставлен­ной цели. Однако такая постановка вопроса обычно бы­вает недостаточна.

Если имеется множество решений какойлибо зада­чи, то возникает добавочная задача — выбрать из это­го множества решений такое, которое с какойлибо точ­ки зрения является наилучшим. Можно привести много примеров таких задач. Так, имеется много способов для склеивания коробки из листа картона заданных разме­ров. Добавочной задачей можно считать задачу получения коробки максимальной вместимости. Из одного города в другой можно проехать, пользуясь различными видами транспорта: железнодорожным, воздушным, вод­ным, автобусным, автомобильным. Добавочной зада­чей можно считать выбор, наиболее выгодного вида транспорта с точки зрения времени проезда, стоимости, удобства, привычек и т. п. Аналогичное положение имеет место я в задачах управления.

В тех случаях, когда цель управления может быть достигнута несколькими различными способами, па спо­соб управления можно наложить добавочные требова­ния, степень выполнения которых может служить осно­ванием для предпочтения одного способа управления всем другим.

Во многих случаях реализация процесса управле­ния требует затраты какихлибо ресурсов: затрат вре­мени, расхода материалов, топлива, электроэнергии. Следовательно, при выборе способа управления следует говорить не только о том, достигается ли поставленная цель, но и о том, какие ресурсы придется затратить для достижения этой цели. В этом случае задача управле­ния состоит в том, чтобы из множества решений, обес­печивающих достижение цели, выбрать одно решение, которое требует наименьшей затраты ресурсов.

В других случаях основанием для предпочтения одного способа управления другому могут служить иные требования, накладываемые на систему управления: стои­мость обслуживания, надежность, степень близости полу­чаемого состояния системы к требуемому, степень досто­верности знаний о состоянии природы и т. п.

Математическое выражение, дающее количественную оценку степени выполнения наложенных на способ управления требований, называется критерием качества управления. Наиболее предпочтительным или оптималь­ным способом управления будет такой, при котором критерий качества управления достигает минимального (иногда максимального) значения.

При выборе, напри­мер, режима полета за критерий качества управления можно принять или выражение для количества топлива, расходуемого на единицу пути, или путь, проходимый за счет единицы топлива. Наиболее экономичному, т. е. оптимальному, режиму будет соответствовать или мини­мальное (в первом случае), или максимальное (во вто­ром случае) значение критерия качества управления.

Приведенное определение оптимального управления будем рассматривать как предварительное. Более стро­гое определение будет дано после рассмотрения ограни­чений, налагаемых на процесс управления.

б) Ограничения, накладываемые на процесс управления

Задачу нахождения оптимального управления или управления вообще следует считать не существую­щей, т. е. не вызывающей никаких проблем, если на ха­рактер движения системы не наложено никаких огра­ничений. Так, проблемы погони за зайцем вообще не существовало бы, если бы собака могла мгновенно прео­долеть расстояние, отделяющее ее от зайца. Следова­тельно, при решении задачи управления нельзя не счи­таться с тем обстоятельством, что движение любой си­стемы всегда подвержено различного рода ограниче­ниям.

Для более ясного представления о встречающихся ограничениях рассмотрим конкретный пример управле­ния автомобилем. Осуществляя процесс управления, во­дитель должен считаться с тем, что автомобиль имеет ограниченную мощность двигателя, а значит, может вести лишь ограниченный груз с ограниченной предель­ной скоростью. Благодаря инерционности скорость авто­мобиля и направление движения могут изменяться лишь с ограниченным по величине ускорением. Это означает невозможность мгновенной остановки или мгновенного изменения направления движения в случае возникнове­ния непредвиденной опасной ситуации и в свою очередь ограничивает скорость движения. При выборе маршрута водитель вынужден считаться с ограниченным запасом горючего в баке и необходимостью пополнения этого за­паса в пути и т.п.

В общем случае имеется два вида ограничений на выбор способа управления. Ограничениями пер­вого вида являются сами законы природы, в соответст­вии с которыми происходит движение управляемой си­стемы. При математической формулировке задачи управления эти ограничения представляются обычно алгебраическими, дифференциальными или разностны­ми уравнениями объекта управления и их часто назы­вают уравнениями связи. Второй вид ограничений вызван ограниченностью ресурсов, используемых при управлении, или иных величин, которые в силу физиче­ских особенностей той или иной системы не могут или не должны превосходить некоторых пределов. Матема­тически ограничения этого вида выражаются обычно в виде систем алгебраических уравнений или неравенств, связывающих переменные, описывающие состояние си­стемы.

в) Постановка задачи оптимального управления

Задачу управления можно считать сформулиро­ванной математически, если:

  • сформулирована цель управления, выраженная через критерий качества управления;

  • определены ограничения первого вида, представляю­щие собой систему дифференциальных или разностных уравнений, ограничивающих возможные способы движе­ния системы;

  • определены ограничения второго вида, представляю­щие собой систему алгебраических уравнений или нера­венств, выражающих ограниченность ресурсов или иных величин, используемых при управлении.

Способ управления, который удовлетворяет всем по­ставленным ограничениям и обращает в минимум (мак­симум) критерий качества управления, называется опти­мальным управлением.

3. Математическое описание объекта управления.

а) Структура объекта управления

Ту физическую систему, процессами в которой мы управляем, будем называть объектом управления. Объекты управления могут быть весьма разнообразны и иметь самую различную физическую природу. Это могут быть:

  • технические устройства: автомобиль, самолет, раке­та, токарный станок, технологический процесс и т. п.;

  • производственные предприятия: отдел, цех, завод, от­расль промышленности;

  • экономические системы: экономика предприятия, эко­номика отрасли промышленности, экономика государ­ства;

  • биологические системы; социальные системы и т. д.

То обстоятельство, что закономерности, которым подчиняются процессы управления, являются общими для объектов управления любой физической природы, позволяет рассмотреть общую структуру и дать общее математическое описание процесса управления.

Обозначим через переменную, определяющую со­стояние объекта управления. Иногда она является одно­мерной или скалярной величиной. Это могут быть угол поворота вала двигателя, скорость самолета или раке­ты, давление пара в котле паровой машины, количество предметов на складе, количество самолетов, базирую­щееся на аэродроме, и т. п.

Однако в большинстве случаев для описания объекта управления требуется не одна, а несколько переменных . При описании механических систем величины представляют собой координаты или скорости дви­жущихся частей. Например, в электрических системах величины будут токами или напряжениями; в экономике это могут быть производственные мощ­ности или ресурсы отдельных отраслей промышлен­ности;

Во всех рассмотренных случаях состояние объекта управления будет описываться многомерной, т. е. век­торной переменной, компонентами которой будут ве­личины

Переменную будем далее называть переменной или вектором состояния объекта управления.

Величины могут изменяться непрерывно в некото­ром диапазоне значений или принимать конечное мно­жество значений. В последнем случае величина будет также принимать конечное множество значений и ее е значение будем обозначать через .

Тогда множество будет представлять собой пространство возможных со­стояний объекта управления. Иногда пространство будем называть

Учебная работа № 1912. Применение информатики, математических моделей и методов в управлении