Учебная работа № 1767. Математические модели электромеханических систем в пространстве состояний
2. Математические модели электромеханических систем в пространстве состояний
Способы получения уравнений состояния реальных физических объектов ничем не отличаются от способов описания этих объектов с помощью дифференциальных уравнений. Уравнения состояния записываются на основе физических законов, положенных в основу работы объекта.
Рассмотрим электромеханическую систему, состоящую из двигателя постоянного тока с независимым возбуждением, работающего на инерционную нагрузку с вязким трением. Управляющим воздействием для двигателя считаем напряжение на якоре U(t), выходной координатой, угол поворота вала двигателя y(t)=j(t). Уравнение электрической цепи имеет вид
,
где противо ЭДС, угловая скорость вала двигателя, единый электромагнитный коэффициент.
Уравнение моментов будет иметь следующий вид
,
где , J момент инерции нагрузки, приведенный к валу двигателя, f коэффициент вязкого трения.
Выберем следующие переменные состояния: х1 =i, x2 =w, x3 =j.
Получим
,
.
Запишем эти уравнения относительно переменных , ,
,
,
,
.
Запишем матричные уравнения
,
где
Рассмотрим структурную схему электромеханической системы с двигателем постоянного тока, работающего на инерционную нагрузку с вязким трением.
Рис. 2.1. Структурная схема электромеханической системы с двигателем постоянного тока
Запишем уравнение состояния для механической системы, представляющей собой груз массой m, подвешенный на пружине и соединенный с гидравлическим демпфером. К грузу приложена сила P(t), выходная переменная перемещения x(t), управляющие воздействия U(t)=P(t). Уравнение движения груза получаем из уравнения равновесия сил
где
Выбираем в качестве переменных состояния x(t) и
Рис. 2.2. Механическая система, включающая в своем составе пружину, массу и вязкий демпфер
Так как дифференциальное уравнение имеет второй порядок, то и количество переменных состояния будет равно двум. Исходное уравнение движения груза можно записать в виде двух уравнений
где U(t)=P(t) управляющее воздействие.
Добавим к этим уравнениям следующее уравнение выхода
Эти уравнения представляют собой уравнения состояния приведенной механической системы. Запишем эти уравнения состояния в матричном виде
Запишем это уравнение в другом виде
где
С данным уравнением состояния можно сопоставлять следующую структурную схему, где двойными линиями показаны векторные переменные.
Рис. 2.3. Структурная схема
Пример: Рассмотрим электрическую цепь и получим уравнение состояния RLC цепи
Рис. 2.4. RLC цепь
Динамическое поведение этой электрической системы полностью определяется при t³t0 , если известны начальные значения: i(t0 ), ec (t0 ) и входное напряжение e(t) при t³t0 , следовательно, эта система полностью определяется переменными состояния i(t) и ec (t). При указанных переменных состояния i(t) и ec (t) имеем следующие уравнения
где
Введем следующие обозначения
В соответствии с этими обозначениями получаем
причем
Следовательно, для электрической цепи запишем эту систему в векторноматричном виде
Запишем матричные уравнения
где