Учебная работа № 1738. Применение графиков в решении уравнений

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (6 оценок, среднее: 4,67 из 5)
Загрузка...

Учебная работа № 1738. Применение графиков в решении уравнений

.

I ) Графическое решение квадратного уравнения:

Рассмотрим приведённое квадратное уравнение : x2+px+q=0;

Перепишем его так:x2=pxq.(1)

Построим графики зависимостей:y=x2 и y=pxq.

График первой зависимости нам известен, это есть парабола; вторая зависимость линейная; её график есть прямая линия. Из уравнения (1) видно, что в том случае, когда х является его решением, рдинаты точек обоих графиков равны между собой. Значит, данному значению х соответствует одна и та же точка как на параболе, так и на прямой, то есть парабола и прямая пересекаются в точке с абциссой х.

Отсюда следующий графический способ решения квадратного уравнения:чертим параболу у=х2, чертим(по точкам) прямую у=рхq.

Если прямая и парабола пересекаются, то абциссы точек пересечения являются корнями квадратного уравнения. Этот способ удобен, если не требуется большой точности.

Примеры:

1.Решить уравнение:4x212x+7=0

Представим его в виде x2=3×7/4.

Построим параболу y=x2 и прямую y=3×7/4.

Рисунок 1.


Для построения прямой можно взять, например, точки(0;7/4) и (2;17/4).Парабола и прямая пересекаются в двух точках с абциссами x1=0.8 и x2=2.2 (см. рисунок 1).

2.Решить уравнение : x2x+1=0.

Запишем уравнение в виде: x2=x1.

Построив параболу у=х2 и прямую у=х1, увидим, что они не пересекаются(рисунок 2), значит уравнение не имеет корней.

Рисунок 2.

Проверим это. Вычислим дискриминант:

D=(1)24=3<0,

А поэтому уравнение не имеет корней.

3. Решить уравнение: x22x+1=0

Рисунок 3.

Если аккуратно начертить параболу у=х2 и прямую у=2х1, то увидим, что они имеют одну общую точку(прямая касается параболы, см. рисунок 3), х=1, у=1;уравнение имеет один корень х=1(обязательно проверить это вычислением).

II ) Системы уравнений.

Графиком уравнения с двумя переменными называется множество точек координатной плоскости, координаты которых обращают уравнение в верное равенство. Графики уравнений с двумя переменными весьма разнообразны. Например, графиком уравнения 2х+3у=15 является прямая, уравнения у=0.5х2 –2 –парабола, уравнения х2 +у2=4 – окружность, и т.д..

Степень целого уравнения с двумя переменными определяется так же, как и степень целого уравнения с одной переменной. Если левая часть уравнения с двумя переменными представляет собой многочлен стандартного вида, а правая число 0, то степень уравнения считают равной степени многочлена. Для того чтобы выяснить, какова степень какоголибо уравнения с двумя переменными, его заменяют равносильным уравнением, левая часть которого – многочлен стандартного вида, а правая нуль. Рассмотрим графический способ решения.

Пример1:решить систему ⌠ x2 +y2 =25 (1)

⌠y=x2+2x+5 (2)

Построим в одной системе координат графики уравнений(Рисунок4):

Построим в одной системе координат графи)

х2 +у2=25 и у=х2+2х+5

Координаты любой точки построенной окружности являются решением уравнения 1, а координаты любой точки параболы являются решением уравнения 2. Значит, координаты каждой из точек пересечения окружности и параболы удовлетворяют как первому уравнению системы, так и второму, т.е. являются решением рассматриваемой системы. Используя рисунок, находим приближённые значения координат точек пересечения графиков: А(2,2; 4,5), В(0;5), С(2,2;4,5), D(4;3).Следовательно, система уравнений имеет четыре решения:

х1≈2,2 , у1≈4,5; х2≈0, у2≈5;

х3≈2,2 , у3≈4,5; х4≈4, у4≈3.

Подставив найденные значения в уравнения системы, можно убедиться, что второе и четвёртое из этих решений являются точными, а первое и третье – приближёнными.

III) Тригонометрические уравнения:

Тригонометрические уравнения решают как аналитически, так и графически. Рассмотрим графический способ решения на примере.

Рисунок5.

Пример1:sinx+cosx=1. Построим графики функций y=sinx u y=1cosx.(рисунок 5)
Из графика видно, что уравнение имеет 2 решения: х=2πп,где пЄZ и х=π/2+2πk,где kЄZ(Обязательно проверить это вычислениями). Рисунок 6.

Пример2:Решить уравнение:tg2x+tgx=0. Решать это уравнение будем по принципу решения предыдущего. Сначала построим графики(См. рисунок 6)функций: y=tg2x u y=tgx. По графику видно что уравнение имеет 2 решения: х=πп, пЄZ u x=2πk/3, где kЄZ.(Проверить это вычислениями)

Применение графиков в решении неравенств.

1)Неравенства с модулем.

Пример1.

Решить неравенство |x1|+|x+1|<4.

На интеграле(1;∞) по определению модуля имеем |х1|=х+1,|х+1|=х1, и, следовательно, на этом интеграле неравенство равносиьно линейному неравенству –2х<4,которое справедливо при х>2. Таким образом, в множество решений входит интеграл(2;1).На отрезке [1,1] исходное неравенство равносильно верному числовому неравенству 2<4.Поэтому все значения переменной, принадлежащие этому отрезку, входят в множество решний.

На интеграле (1;+∞) опять получаем линейное неравенство 2х<4, справедливое при х<2. Поэтому интеграл (1;2) также входит в множество решений. Объединяя полученные результаты, делаем вывод: неравенству удовлетворяют все значения переменной из интеграла (2;2) и только они.

Однако тот же самый результат можно получить из наглядных и в то же время строгих геометрических соображений. На рисунке 7 построены графики функций: y=f(x)=|x1|+|x+1| и y=4.

Рисунок 7.


На интеграле (2;2) график функции y=f(x) расположен под графиком функции у=4, а это означает, что неравенство f(x)<4 справедливо. Ответ:(2;2)

II)Неравенства с параметрами.

Решение неравенств с одним или несколькими параметрами представляет собой, как правило, задачу более сложную по сравнению с задачей, в которой параметры отсутствуют.

Например, неравенство√а+х+√ах>4, содержащее параметр а, естественно, требует, для своего решения гораздо больше усилий, чем неравенство √1+х + √1х>1.

Что значит решить первое из этих неравенств? Это, по существу, означает решить не одно неравенство, а целый класс, целое множество неравенств, которые получаются, если придавать параметру а конкретные числовые значения. Второе же из выписанных неравенств является частным случаем первого, так как получается из него при значении а=1.

Таким образом, решить неравенство, содержащее параметры, это значит определить, при каких значениях параметров неравенство имеет решения и для всех таких значений параметров найти все решения.

Пример1:

Решить неравенство|ха|+|х+а|<b, a<>0.

Для решения данного неравенства с двумя параметрами aub воспользуемся геометрическими соображениями. На рисунке 8 и 9 построены графики функций.

Y=f(x)=|xa|+|x+a| uy=b.

Очевидно, что при b<=2|a| прямая y=b проходит не выше горизонтального отрезка кривой y=|xa|+|x+a| и, следовательно, неравенство в этом случае не имеет решений (рисунок 8). Если же b>2|a|, то прямая y=b пересекает график функции y=f(x) в двух точках (b/2;b) u (b/2;b)(рисунок 6) и неравенство в этом случае справедливо при –b/2<x<b/2,так как при этих значениях переменной кривая y=|x+a|+|xa| расположена под прямой y=b.

Ответ:Если b<=2|a| , то решений нет,

Если b>2|a|, то x €(b/2;b/2).

III ) Тригонометрические неравенства:

При решении неравенств с тригонометрическими функциями существенно используется периодичность этих функций и их монотонность на соответствующих промежутках. Простейшие тригонометрические неравенства. Функция sinx имеет положительный период 2π. Поэтому неравенства вида: sinx>a, sinx>=a,

sin x<a, sin x<=a.

Достаточно решить сначала на какомлибо отрезке лдины 2π. Множество всех решений получим, прибавив к каждому из найденных на этом отрезке решений числа вида 2πп, пЄZ.

Пример 1: Решить неравенство sinx>1/2.(рисунок 10)

Сначала решим это неравенство на отрезке[π/2;3π/2]. Рассмотрим его левую часть – отрезок [π/2;3π/2].Здесь уравнение sinx=1/2 имеет одно решение х=π/6; а функция sinx монотонно возрастает. Значит, если –π/2<=x<= π/6, то sinx<=sin(π/6)=1/2, т.е. эти значения х решениями неравенства не являются. Если же –π/6<х<=π/2 то sinx>sin(π/6) = –1/2. Все эти значения х не являются решениями неравенства.

На оставшемся отрезке [π/2;3π/2] функция sinx монотонно убывает и уравнение sinx = 1/2 имеет одно решение х=7π/6. Следовательно, если π/2<=x<7π/, то sinx>sin(7π/6)=1/2, т.е. все эти значения х являются решениями неравенства. Для x Є[7π/6;3π/2] имеем sinx<= sin(7π/6)=1/2, эти значения х решениями не являются . Таким образом, множество всех решений данного неравенства на отрезке [π/2;3π/2] есть интеграл (π/6;7π/6).

В силу периодичности функции sinx с периодом 2π значения х из любого интеграла вида: (π/6+2πn;7π/6 +2πn),nЄZ, также являются решениями неравенства. Никакие другие значения х решениями этого неравенства не являются .

Ответ: π/6+2πn<x<7π/6+2πn, где nЄZ.

Рисунок 10.

Учебная работа № 1738. Применение графиков в решении уравнений