Учебная работа № 1699. Интеграл по комплексной переменной. Операционное исчисление и некоторые его приложения

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (6 оценок, среднее: 4,67 из 5)
Загрузка...
Контрольные рефераты

Учебная работа № 1699. Интеграл по комплексной переменной. Операционное исчисление и некоторые его приложения

Интеграл по комплексной переменной.

Определение 1: Кривая Г называется гладкой ,если она имеет непрерывно изменяющуюся касательную.

Определение 2: Кривая называется кусочногладкой ,если она состоит из конечного числа гладких дуг.

Основные свойства : Пусть на комплексной плоскости Z задана кусочногладкая кривая С длиной , используя параметрическое задание кривой С зададим tи (t), где иявляются кусочногладкими кривыми от действительной переменной t. Пусть <= t<=причем и могут быть бесконечными числами .

Пусть и удовлетворяют условию : [‘(t)]2 + [‘(t)]2 0. Очевидно, что задание координат =tи (t), равносильно заданию комплексной функции (t)= (t) i(t).

Пусть в каждой точке (t) кривой С определена некоторая функция f ( ). Разобьем кривую С на n – частичных дуг точками деления 0 , 1 , 2 , …, n1 соответствующие возрастающим значениям параметра t, т.е. t0, t1, …, t i+1 > t i.

 i = i i1. Составим интегрируемую функцию S = f (*) i . (1)
где *– производная точки этой дуги.

Если при стремлении max | i | 0 существует предел частных сумм не зависящий ни от способа разбиения кривой С на частичные дуги, ни от выбора точек i , то этот предел называется интегралом от функции f ( ) по кривой С.

(2)

f (i* ) = u (Pi*) + iv (Pi*) (3)

где i = (t) i(t) ((t) и(t) действительные числа)

Подставив (3) в (1) получим :

(4)

Очевидно, что (4) состоит из суммы двух частных сумм, криволинейных интегралов действительной переменной. Переходя в (4) к пределу при и 0 и предполагая, что данные пределы существуют, получаем :

(5)

Заметим, что для существования криволинейного интегралов, входящих в (5), а тем самым и для существования интеграла (2) достаточно кусочной непрерывности функций u и v. Это означает, что (2) существует и в случае неаналитичности функции f ( ).

Сформулируем некоторые свойства интеграла от функции комплексной переменной. Из равенства (5) следуют свойства :






О
ограниченности интеграла.

П
ри этом z = ( ).

7.) Пусть Cp – окружность радиуса , с центром в точке Z0. Обход вокруг контура Cp осуществляется против часовой стрелки. Cp : = Z0 + ei, 0 2, d = iei d .

К
усочногладкую замкнутую кривую будем называть замкнутым контуром, а интеграл по замкнутому контуру – контурным интегралом.

ТЕОРЕМА КОШИ.

В качестве положительного обхода контура выберем направление при котором внутренняя область, ограниченная данным замкнутым контуром остается слева от направления движения :

Д
ля действительной переменной имеют место формулы Грина. Известно, что если функции P(x, y) и Q(x, y) являются непрерывными в некоторой заданной области G, ограниченны кусочногладкой кривой С, а их частные производные 1го порядка непрерывны в G, то имеет место формула Грина:

( 8 )

ТЕОРЕМА : Пусть в односвязной области G задана аналитическая функция f(Z), тогда интеграл от этой функции по замкнутому контуру Г целиком лежащему в G , равен нулю.

Доказательство : из формулы (5) следует:

Т
.к. f( ) аналитическая всюду, то U(x, y), V(x, y) непрерывны в области, ограниченной этим контуром и при этом выполняются условия КошиРимана. Используя свойство криволинейных интегралов:

А

налогично :

По условию КошиРимана в последних равенствах скобки равны нулю, а значит и оба криволинейных интеграла равны нулю. Отсюда :


ТЕОРЕМА 2 (Вторая формулировка теоремы Коши) : Если функция f() является аналитической в односвязной области G, ограниченной кусочногладким контуром C, и непрерывна в замкнутой области G, то интеграл от такой функции по границе С области G равен нулю.

TEOPEMA 3 (Расширение теоремы Коши на многосвязную область) :

Пусть f () является аналитической функцией в многосвязной области G, ограниченной извне контуром С0, а изнутри контурами С1, С2, .. ,Сn (см. рис.). Пусть f () непрерывна в замкнутой области G, тогда :

, где С – полная граница области G, состоящая из контуров С1, С2, .. , Сn. Причем обход кривой С осуществляется в положительном направлении.

Неопределенный интеграл.

С
ледствием формулы Коши является следующее положение : пусть f(Z) аналитична в односвязной области G, зафиксируем в этой области точку Z0 и обозначим:

интеграл по какойлибо кривой, целиком лежащей в области G, содержащей Z0 и Z, в силу теории Коши этот интеграл не зависит от выбора кривой интегрирования и является однозначной функцией Ф(Z). Аналитическая функция Ф(Z) называется первообразной от функции f(Z) в области G, если в этой области имеет место равенство : Ф (Z) = f( Z).

Определение: Совокупность всех первообразных называется неопределенным интегралом от комплексной функции f(Z). Так же как и в случае с функцией действительного переменного имеет место равенство :

( 9)

Это аналог формулы НьютонаЛейбница.

Интеграл Коши. Вывод формулы Коши.

Ранее была сформулирована теорема Коши, которая позволяет установить связь между значениями аналитической функции во внутренних точках области ее аналитичности и граничными значениями этой функции.

П
усть функция f(Z) – аналитическая функция в односвязной области G, ограниченной контуром С. Возьмем внутри этой области произвольную точку Z0 и в области G вокруг этой точки построим замкнутый контур Г. Рассмотрим вспомогательную функцию (Z). Эта функция аналитична в области G всюду, кроме точки Z=Z0. Проведем контур с достаточным радиусом, ограничивающий точку Z0, тогда функция будет аналитична в некоторой двусвязной области, заключенной между контурами Г и . Согласно теореме Коши имеем :

По свойствам интегралов :

(2 )

Так как левый интеграл в (2) не зависит от выбора контура интегрирования, то и правый интеграл также не будет зависеть от выбора контура. Выберем в качестве окружность с радиусом . Тогда:

(3)

Уравнение окружности : = Z0 + ei (4)

Подставив (4) в (3) получим :

( 5 )

( 6 )

(7)

Устремим 0, т.е.  0.

Тогда т.к. функция f() аналитична в точке Z=Z0 и всюду в области G, а следовательно и непрерывна в G, то для всех >0 существует >0, что для всех из –окрестности точки Z0 выполняется | f() – f(Z0) | < .


(8)

Подставив ( 7) в ( 6) с учетом ( 8) получаем :

П
одставляя в ( 5) и выражая f(Z0) имеем :

(9)

Это интеграл Коши.

Интеграл, стоящий в (9) в правой части выражает значение аналитической функции f() в некоторой точке Z0 через ее значение на произвольном контуре , лежащем в области аналитичности функции f() и содержащем точку Z0 внутри.

Очевидно, что если бы функция f() была аналитична и в точках контура С, то в качестве границы в формуле (9) можно было использовать контур С.

Приведенные рассуждения остаются справедливыми и в случае многосвязной области G.

Следствие : Интеграл Коши, целиком принадлежащий аналитической области G имеет смысл для любого положения Z0 на комплексной плоскости при условии, что эта точка есть внутренней точкой области Г. При этом если Z0 принадлежит области с границей Г, то значение интеграла равно (9), а если т. Z0 принадлежит внешней области, то интеграл равен нулю :

П
ри Z0 Г указанный интеграл не существует.

Интегралы, зависящие от параметра.

Рассматривая интеграл Коши, видим, что подинтегральная функция зависит от 2х комплексных переменных : переменной интегрирования и Z0. Таким образом интеграл Коши может быть рассмотрен как интеграл, зависящий от параметра, в качестве которого выбираем точку Z0.

Пусть задана функция двух комплексных переменных (Z, ), причем Z= x + iy в точке, принадлежащей некоторой комплексной плоскости G. = + i С. (С граница G).

Взаимное расположение области и кривой произвольно. Пусть функция (Z, ) удовлетворяет условиям : 1) Функция для всех значений  С является аналитической в области G. 2) Функция (Z, ) и ее производная  являются непрерывными функциями по совокупности переменных Z и при произвольном изменении области G и переменных на кривой С. Очевидно, что при сделанных предположениях :

И
нтеграл существует и является функцией комплексной переменной. Справедлива формула :

(2)

Эта формула устанавливает возможность вычисления производной от исходного интеграла путем дифференцирования подинтегральной функции по параметру.

ТЕОРЕМА. Пусть f(Z) является аналитической функцией в области G и непрерывной в области G (G включая граничные точки ), тогда во внутренних точках области G существует производная любого порядка от функции f(Z) причем для ее вычисления имеет место формула :

(3)

С помощью формулы (3) можно получить производную любого порядка от аналитической функции f (Z) в любой точке Z области ее аналитичности. Для доказательства этой теоремы используется формула (2) и соответственные рассуждения, которые привели к ее выводу.

ТЕОРЕМА МОРЕРА. Пусть f(Z) непрерывна в односвязной области G и интеграл от этой функции по любому замкнутому контуру, целиком принадлежащему G равен 0. Тогда функция f (Z) является аналитической функцией в области G. Эта теорема обобщается и на случай многосвязной области G.

Разложение функции комплексного переменного в ряды.

Если функция f(x, y) определена и непрерывна вместе с частными производными (до nго порядка ), то существует разложение этой функции в ряд Тейлора :

Итак, если задана функция f (z) комплексного переменного, причем f (z) непрерывная вместе с производными до nго порядка, то:

(2) – разложение в ряд Тейлора.

Формула (2) записана для всех Z принадлежащих некоторому кругу | ZZ0 |

Функция f (z), которая может быть представлена в виде ряда (2) является аналитической функцией. Неаналитическая функция в ряд Тейлора не раскладывается.

(3)

(4)

(5)

Причем | Z | < R, R  .

Формулы ЭЙЛЕРА.

Применим разложение (3) положив, что Z = ix и Z= ix;

(6)

Аналогично взяв Z = ix получим :

(7)

Из (6) и (7) можно выразить т.н. формулы Эйлера :

(8)

В общем случае :

(9)

Известно, что :

(10)

Тогда из (9) и (10) вытекает связь между тригонометрическими и гиперболическими косинусами и синусами:

Ряд ЛОРАНА.

Пусть функция f(z) является аналитической функцией в некотором круге радиусом R, тогда ее можно разложить в ряд Тейлора (2). Получим тот же ряд другим путем.

ТЕОРЕМА 1.

Однозначная функция f(Z) аналитическая в круге радиусом |ZZ0| < R раскладывается в сходящийся к ней степенной ряд по степеням ZZ0.

Опишем в круге радиусом R окружность r, принадлежащую кругу с радиусом R.

Возьмем в круге радиуса r точку Z, а на границе области точку , тогда f(z) будет аналитична внутри круга с радиусом r и на его границе. Выполняется условие для существования интеграла Коши :

(13)

(11)

Поскольку

, то выражение можно представить как сумму бесконечно убывающей геометрической прогрессии со знаменателем , т.е. :

(12)

Представим равномерно сходящимся рядом в круге радиуса r, умножая (12) на 1/(2i) и интегрируя по L при фиксированном Z, получим : слева интеграл (13) который равен f (Z), а справа будет сумма интегралов :

Обозначая , получим : (14)

Это разложение функции f (Z) в круге R в ряд Тейлора. Сравнивая (14) с рядом (2) находим, что (15)

ТЕОРЕМА 2.

Если однозначная функция f(Z) аналитична вне круга с радиусом r с центром в точке Z0 для всех Z выполняется неравенство r < |ZZ0 |, то она представляется рядом :

(16)

где h ориентированная против часовой стрелки окружность радиуса r (сколь угодно большое число). Если обозначить (17) , получим :

(18)

ТЕОРЕМА 3.

Если однозначная функция f(Z) аналитическая в кольце Z< |ZZ0 | Z , то она раскладывается в сходящийся степенной ряд :

(19)

f1 и f2 можно представить в виде двух рядов :

(20)

(21)

Ряд (19) – ряд Лорана, при этом ряд (20) сходится в круге радиуса R, ряд (21) сходится вне круга радиуса R функции f2(Z). Общая область сходимости ряда – кольцо между r и R.

f1(Z) – правильная часть.

f2(Z) – главная часть ряда Лорана.

Ряд Тейлора – частный случай ряда Лорана при отсутствии главной его части.

Классификация изолированных особых точек. Вычеты.

Определение 1. Особой точкой функции f(Z) определенной в области (замкнутой) G, ограниченной Жордановой кривой, называется точка Z=Z0 G в которой аналитичность функции f1(Z) нарушается. Рабочая точка Z=Z0 функции f(Z), ограниченной в круге |ZZ0|0. В зависимости от поведения функции f(Z) в окрестности изолированных особых точек последние классифицируются на :

  1. Устранимые особые точки. Ими называются особые точки, для которых существует , где А – конечное число.

  2. Если для особой точки существует предел , то такая особая точка называется полюсом.

  3. Если не существует, то точка Z=Z0 называется существенной особой точкой.

Если Сn=0, то особая точка есть устранимая особая точка.

Пусть f(Z0)=C0 и Cn для всех n=1,2,3,..,m отличного от 0, а для всех n m+1 Cn=0, тогда Z=Z0 будет являться полюсом порядка m.

При m>1 такой полюс будет называться простым.

, если m  , то в этом случае в точке Z=Z0 имеем существенную особенность.

Определение 2. Вычетом функции f(Z) в круге |ZZ0| , где L – ориентированный против часовой стрелки контур целиком расположенный в круге радиуса R, содержащем Z0. Вычет существует только для изолированных особых точек. Очевидно, что вычет функции f(z) при Z=Z0 равен первому коэффициенту ряда главной части Лорана :

Если полюс имеет кратность m 1, то для определения вычетов используется формула :

(3)

при m=1 :

Основная теорема о вычетах.

Пусть f(z) аналитическая в области G кроме конечного числа полюсов Z = a1, a2, …, ak. –произвольный, кусочногладкий замкнутый контур содержащий внутри себя эти точки и целиком лежащий внутри области G. В этом случае интеграл равен сумме вычетов относительно a1, a2, …, ak и т.д. умноженный на 2i :

(5)

Пример :

Найти вычет

Особые точки : Z1=1, Z2= 3.

Определим порядок полюсов – все полюсы первого порядка.

Используем формулу (3) :

Интегральные преобразования.

Операционное исчисление и некоторые его приложения.

Пусть задана функция действительного переменного t, которая удовлетворяет условиям :

  1. Функция f(t) кусочнонепрерывная (имеет конечное число точек разрыва первого рода).

  2. Для любого значения параметра t>0 существует M>0 и S00 такие, что выполняется условие : |f(t)|S0t

Рассмотрим функцию f(t)ept , где р – комплексное число р = ( а + i b).

(1)

Применим к этому соотношению формулу Эйлера :

Проинтегрировав это равенство получим :

(2)

Оценим левую часть равенства (2) :

А согласно свойству (3) |f(t)| < Me S0t

В случае если a>S0 имеем :

Аналогично можно доказать, что существует и сходится второй интеграл в равенстве (2).

Таким образом при a>S0 интеграл, стоящий в левой части равенства (2) также существует и сходится. Этот интеграл определяет собой функцию от комплексного параметра р :

(3)

Функция F(p) называется изображением функции f(t) по Лапласу, а функция f(t) по отношению к F(p) называется оригиналом.

f(t) F(p), где F(p) – изображение функции f(t) по Лапласу.

это оператор Лапласа.

Смысл введения интегральных преобразований.

Этот смысл состоит в следующем : с помощью перехода в область изображения удается упростить решение многих задач, в частности свести задачу решения многих задач дифференциального, интегрального и интегродифференциального уравнения к решению алгебраических уравнений.

Теорема единственности: если две функции  tиt имеют одно и то же изображение F(p), то эти функции тождественно равны.

Смысл теоремы : если при решении задачи мы определим изображение искомой функции, а затем по изображению нашли оригинал, то на основании теоремы единственности можно утверждать, что найденная функция является решением в области оригинала и причем единственным.

Изображение функций 0(t), sin (t), cos (t).

Определение: называется единичной функцией.

Единичная функция удовлетворяет требованиям, которые должны быть наложены на функцию для существования изображения по Лапласу. Найдем это изображение :

Изображение единичной функции

Рассуждая аналогичным образом получим изображение для функции sin(t) :

интегрируя по частям получим :

т.е.

Аналогично можно доказать, что cos (t) переходит в функцию в области преобразований. Откуда :

Изображение функции с измененным масштабом независимого переменного.

где а – константа.

Таким образом :

и

Свойства линейности изображения.

Теорема : изображение суммы нескольких функций умноженное на постоянные равны сумме изображений этих функций умноженных на те же постоянные.

Если , то , где

Теорема смещения : если функция F(p) это изображение f(t), то F(+p) является изображением функции et f(t) (4)

Доказательство :

Применим оператор Лапласа к левой части равенства (4)

Что и требовалось доказать.

Таблица основных изображений:

F(p) f(t) F(p) f(p)

1

Изображение производных.

Теорема. Если , то справедливо выражение :

(1)

Доказательство :

(2)

(3)

Подставляя (3) в (2) и учитывая третье условие существования функции Лапласа имеем :

Что и требовалось доказать.

Пример: Решить дифференциальное уравнение :

Если x(0)=0 и x’(0)=0

Предположим, что x(t) – решение в области оригиналов и , где решение в области изображений.

Изображающее уравнение :

Теорема о интегрировании оригинала. Пусть находится в области оригиналов, , тогда также оригинал, а его изображение

Учебная работа № 1699. Интеграл по комплексной переменной. Операционное исчисление и некоторые его приложения