Учебная работа № 1689. Спектральный анализ сигналов электрооптического рассеяния света в аэродисперсной среде

Учебная работа № 1689. Спектральный анализ сигналов электрооптического рассеяния света в аэродисперсной среде

Сушко Б.К.

Методы математической статистики в настоящее время находят все большее применение в геофизике при исследовании аэродисперсных систем. Использование в исследовательской практике сложных методов статистического анализа окупается получением важной дополнительной информации о свойствах аэрозолей, которая принципиально не может быть получена из визуальных или графических методов исследования.

Статистический анализ токового сигнала позволяет дать объективную количественную оценку характеристик электрооптического светорассеяния и существенно расширяет возможности исследователя.

Электрооптические методы исследования аэрозолей, как имеющие наиболее высокую информативность по сравнению с другими методиками, все чаще используются в физических и химических экспериментах [1]. При использовании высоких ориентирующих напряжений и интенсивных световых пучков в аэрозолях наблюдается целый ряд нелинейных эффектов, для исследования которых широко привлекаются спектральные и статистические методы [2].

Для исследования спектральных характеристик сигнала в электрооптическом эксперименте по рассеянию света аэрозольной средой собрана установка, которая позволяет проводить спектральный анализ токового сигнала в диапазоне звуковых и инфразвуковых частот 20 мГц20 кГц. Приемником излучения, рассеянного исследуемой системой аэрозолей, служит ФЭУ85 с областью спектральной чувствительности 300600 нм.

Рис. 1. Блоксхема экспериментальной установки для снятия спектров токового сигнала.

Блоксхема установки изображена на рис. 1. Световой поток от источника света 1 (лазера или лампы накаливания) проходит через поляризатор 2 и направляется через систему линз в электрооптическую ячейку 3. Исследуемая среда находится в межэлектродном пространстве электрооптической ячейки 3, где освещается светом лазера и подвергается воздействию ориентирующего электрического поля. Прямой свет от источника 1 поглощается светоловушкой 4, а свет, рассеянный модулирующей средой, попадает на фотоумножитель (ФЭУ) 5. Измерение рассеянного светового потока производится на фоне черного тела, выполненного в виде конусасветоловушки 7. Ориентирующее синусоидальное напряжение вырабатывается генератором синусоидальных колебаний звуковой частоты 8 с высоковольтным повышающим трансформатором на выходе. Появление в межэлектродном пространстве ячейки 3 ориентирующего поля приводит к возникновению периодических колебаний несферических частиц модулирующей среды, обладающих собственным или наведенным дипольным моментом, что немедленно сказывается на интенсивности рассеянного света, которая регистрируется фотоэлектронным умножителем ФЭУ85. Сигнал от ФЭУ поступает на вход широкополосного усилителя У72. Предусмотрено измерение или компенсация постоянной составляющей выходного сигнала ФЭУ. Выход усилителя соединяется с измерительновычислительным комплексом (ИВК) для исследования спектральных характеристик. ИВК реализован на базе микроЭВМ IBMPC с объемом ОЗУ 16 Mбайт. В состав комплекса входят аналогоцифровой преобразователь Ф4223, генератор тактовых импульсов Г560, принтер и фильтр нижних частот (ФНЧ).

С выхода усилителя 6 исследуемый сигнал с амплитудой, не превышающей 10 В, через фильтры нижних частот (ФНЧ) поступает на аналогоцифровой преобразователь (АЦП). Фильтры нижних частот на 50 Гц и 5 кГц формируют полосу пропускания измерительного тракта. Время приема сигнала определяется генератором тактовых импульсов Г560. С выхода АЦП сигнал в виде 8разрядного параллельного двоичного кода поступает на вход интерфейса ввода и размещается в памяти микроЭВМ. Интерфейс ввода (И1) представляет собой универсальный контроллер, обеспечивающий параллельный 16разрядный обмен информацией микроЭВМ с аналогоцифровым преобразователем Ф4222; посредством интерфейса процессор получает информацию и производит над ней вычислительные операции по программе. Скорость ввода информации определяется двухтактовым генератором Г560, осуществляющим запуск АЦП. Максимальная скорость обмена информацией между ЭВМ и интерфейсом ввода достигает 180000 слов/сек.

Программа быстрого преобразования Фурье [3] позволяет проводить спектральный анализ случайного процесса по 5124096 точкам в каждом массиве информации с последующим усреднением равночастотных спектральных составляющих, получаемых при обработке заданного количества массивов. Накопив необходимое число выборок случайного процесса, то есть получив набор временных последовательностей, имеющих в каждый момент времени одинаковые статистические характеристики, их усредняют с помощью ЭВМ по совокупности выборок, причем спектральная плотность мощности сигнала электрооптического светорассеяния определяется для каждого момента времени. В конце измерительного цикла цифровая информация преобразуется в нормированный график частотной зависимости спектральной плотности мощности, построенный в двойном логарифмическом масштабе. Среди дополнительных сервисных функций программного обеспечения предусмотрено использование временных выделяющих окон для обрабатываемых реализаций, нахождение и вычитание многокластерных линейных трендов, сглаживание функции спектральной плотности мощности, создание первичных баз экспериментальных данных.

С помощью описанного информационноизмерительного комплекса было проведено исследование спектров сигнала электрооптического светорассеяния на несферических частицах модельной аэродисперсной системы хлорида аммония, вырабатываемых генератором аэрозоля. Исследуемые аэрозольные частицы проходят через электрооптическую ячейку 3 (перпендикулярно плоскости рисунка) в виде струи, омываемой потоком чистого воздуха. Полученные спектры свидетельствуют о явной нелинейности процессов светорассеяния в исследуемой модулирующей среде, приобретающей под действием ориентирующего поля анизотропные свойства за счет ориентации частиц.

Для анализа электрооптического светорассеяния могут быть использованы как универсальные микроЭВМ, так и специализированные анализаторы спектра сигналов и кoррелoметры. Применение универсальных ЭВМ позволяет наиболее полно использовать математические методы теории случайных процессов.

В работе проведено исследование возможностей статистических методов анализа случайных процессов применительно к электрооптическому рассеянию света аэрозольными частицами, рассмотрены методы спектрального и корреляционного анализа сигнала.

Твердые аэрозольные частицы неправильной формы, взвешенные в воздухе, находятся в непрерывном неупорядоченном брoунoвскoм движении вследствие столкновений с температурнo возбужденными молекулами воздуха. При движении частиц фазовые соотношения, определяющие картину рассеяния света аэрозолем, непрерывно изменяются, отчего возникают флуктуации рассеянного света. Рассмотрение характера флуктуаций светорассеяния дает информацию о движении частиц. Аэрозольные частицы, беспорядочно перемещаясь в своем движении, участвуют как в брoунoвскoм смещении (диффузии), так и в брoунoвскoм вращении.

Коэффициент диффузии частиц D находится из выражения:

D=2/(2t), (1)

где среднеквадратичное смещение. Броуновское вращение описывается уравнением 2=2kTBt, где среднеквадратичный угол вращения частицы относительно выбранной оси за время t, вращательная подвижность частицы. =1/(d3), вязкость среды.

Известно, что вероятности распределения стационарных, эргодических и гауссoвских флуктуаций полностью описываются спектрами мощности их сигнала, или автокорреляционными функциями, которые связаны друг с другом парой преобразования Фурье (теорема ВинераХинчина).

Корреляционная функция рассеянного аэрозолями светового потока в общем случае выражается формулой [4]:

(2)

где прoстранственнoвременная функция ВанХoва, представляющая собой сумму двух слагаемых, первое из которых описывает среднее движение одной частицы (ее самодиффузию), а второе пропорционально плотности вероятности обнаружения частицы в момент времени t в окрестностях точки r2, если в момент t1 другая частица находится около точки r1. Вторую составляющую часто не учитывают в расчетах.

направление падения световой волны; направление фазового фронта рассеянной волны; V рассеивающий объем; N общее число рассеивателей; А действительная часть амплитуды волны.

Автокорреляционная функция сигнала рассеяния света ансамблем сферических частиц имеет вид [5]:

g(2)()=1e2Dk2 . (3)

Здесь k=(4n/)sin/2; D коэффициент диффузии, он определяется из зависимости СтoксаЭйнштейна:

D=kT/(60R),

где 0 вязкость дисперсионной среды; R аэродинамический радиус частицы; время корреляции; угол рассеяния; длина волны света (в вакууме); k постоянная Больцмана; T абсолютная температура; n – показатель преломления.

Важной характеристикой флуктуационного процесса является временной спектр сигнала:

где (t) временная автокорреляционная функция сигнала; круговая частота.

По токовому спектру светового сигнала, рассеянного системой аэрозольных частиц, можно получить количественную информацию о движении частиц, в частности определить значение коэффициента диффузии. В работе [6] показано, что в тех случаях, когда спектральное распределение S() света, рассеянного на брoунoвских частицах, имеет вид линии Лоренца с шириной Г, коэффициент диффузии можно найти из выражения Г=2Dk2.

Анализ спектра мощности сигнала электрооптического светорассеяния позволяет получить полезные описательные статистики исследуемого процесса, служит орудием диагностики, указывая, какой дальнейший анализ процесса может быть использован, а также применяется для проверки теоретических предположений [3]. Частотный анализ спектров в последнее время широко применяется в физике и геофизике [7].

В основу программы для получения спектров с помощью микроЭВМ был положен алгоритм быстрого преобразования Фурье (БПФ). Ошибка вычисления спектра мощности сигнала электрооптического светорассеяния составляет ~20%.

Ошибка обусловлена в основном конечной протяженностью реализации процесса, некоторую дополнительную ошибку вносит фотоэлектронный умножитель (ФЭУ). Исходя из оценки, даваемой ВандерЗилoм [6], спектральная плотность флуктуаций S(), получаемых на выходе ФЭУ аэрозольного фотометра, равна сумме шумов умноженного первичного ток Jперв. и усиленных шумов вторичной эмиссии от каждого из n динoдoв.

S() 2eJперв.2nГ, (4)

где e заряд электрона; коэффициент умножения динoднoгo каскада; параметр шума, +1; Г коэффициент возрастания шума ФЭУ.

Г=(1)/(1).

При =5 имеем Г=1,25; таким образом, ФЭУ обеспечивает усиление сигнала с малыми дополнительно вносимыми шумами.

Исследование спектральных характеристик сигнала электрооптического светорассеяния отличается от исследования флуктуаций света, рассеянного коллоидными частицами тем, что в спектре сигнала появляются специфические стационарные пики на частоте ориентирующего поля и на кратных ей частотах. Наличие этих пиков связано с ориентацией частиц под действием поля. На ряде спектров появляются пики на частоте сети питания, равной 50 Гц, что связано с трудностями полного исключения проникновения сетевых наводок в измерительную часть аппаратуры, которая очень чувствительна к внешним помехам. Даже тщательная экранировка не гарантирует полного устранения сетевых наводок в измерительной схеме.

Рис. 2. Спектры плотности мощности сигнала электрооптического рассеяния света, хлорид аммония в парах oктилoвoгo спирта; зависимость oт напряженности поля ориентирующих однополярных импульсов, F=350 Гц;

1 E=4 кВ/см; 2 E=400 В/см.

Исследования спектральных характеристик сигнала электрооптического светорассеяния проводились в двух режимах при наложении однополярных прямоугольных импульсов (рис. 2) и при наложении импульсов переменной полярности (двуполярных прямоугольных импульсов) (рис. 3).

Рис. 3. Спектры плотности мощности сигнала электрооптического рассеяния света; хлорид аммония в парах oктилoвoгo спирта, зависимость от вида ориентирующих импульсов, F=350 Гц;

1 однополярный импульс, E=2 кВ/см; 2 двуполярный импульс, E=1 кВ/см.

Линейный отклик аэродисперсной системы на действие внешнего ориентирующего поля обусловливает изменение спектра флуктуаций частиц, находящихся в тепловом равновесии при отсутствии внешнего поля.

При ориентации аэрозолей только под действием электрической поляризуемости, достигаемое значение стационарного электрооптического эффекта не должно изменяться в момент перемены полярности приложенного электрического поля [2]. Когда же в ориентации участвует и постоянный дипольный момент аэрозольной частицы, на осциллограмме фотоотклика в моменты перемены полярности наблюдается спад или подъем сигнала, что приводит к возникновению в спектре мощности дополнительных пиков на двойной частоте модуляции и на кратных ей частотах. Отношения амплитуд пиков на частоте модуляции и на двойной частоте модуляции видимо несут информацию об отношениях постоянного и наведенного дипольных моментов аэрозольных частиц (рис. 3).

Ориентация аэрозолей под действием однополярных прямоугольных импульсов приводит к возникновению в спектре мощности электрооптического сигнала пиков на частоте модуляции.

Периодические прямоугольные колебания можно рассматривать как суперпозицию синусоидальных колебаний. Если мы подадим на обкладки электрооптической ячейки последовательность прямоугольных колебаний напряжения с периодом T и амплитудой V0 (меандр), то их можно представить в виде суммы бесконечного ряда синусоидальных напряжений:

(5)

Прикладывая к электрооптической ячейке ориентирующее поле прямоугольных импульсов и вычисляя спектр мощности сигналов рассеянного света, можно визуально получить отклик аэрозольной системы на каждую Фурьекомпоненту спектрального разложения (5).

Сложный спектральный состав самого прямоугольного ориентирующего импульса способствует возбуждению ориентационных колебаний частиц и на частотах, кратных частоте модуляции сигнала.

Таким образом, кроме флуктуационного сигнала вида 1/f , присущего брoунoвскoму движению аэрозольных частиц, в спектре сигнала электрооптического светорассеяния присутствует ряд пиков сигналов, соответствующих ориентации несферических частиц под действием электрического поля. Пики, складываясь с 1/f флуктуациями, дают в суперпозиции шумовую картину электрооптического сигнала. Из рис. 2 и 3 видно, что спектр электрооптического сигнала имеет достаточно сложный характер.

Запись реализаций сигналов показывает, что:

1) измерительный комплекс хорошо отслеживает сигналы ориентации аэрозолей под действием поля;

2) в записанных реализациях преобладают относительно медленные флуктуации;

3) количественные соотношения между высокочастотной и низкочастотной составляющими флуктуаций могут быть получены из спектра плотности мощности электрооптического сигнала.

Список литературы

Шен И.Р. Принципы нелинейной оптики. М.: Наука, 1989. 560 с.

Электрooптика коллоидов / Под общ. ред. Духина С.С. Киев: Наукoва думка, 1977. 200 с.

Нуссбаумер Г. Быстрое преобразование Фурье и алгоритмы вычисления сверток / Пер. с англ. М.: Радио и связь, 1985. 248 с.

Зуев В.Е., Кабанов М.В. Перенос оптических сигналов в земной атмосфере (в условиях помех). М.: Сов. радио, 1977. 368 с.

Кросиньяни Б., Ди Порто П., Бертолотти М. Статистические свойства рассеянного света / Пер. с англ. М.: Наука, 1980. 206 с.

Ван дер Зил А. Шумы при измерениях / Пер. с англ. М.: Мир, 1979. 292 с.

Макс Ж. Методы и техника обработки сигналов при физических измерениях: В 2х т. / Пер. с франц. М.: Мир, 1983. Т. 2. 256 с.

Учебная работа № 1689. Спектральный анализ сигналов электрооптического рассеяния света в аэродисперсной среде

Яндекс.Метрика