Учебная работа № 1380. Шар и сфера
:
-
Вступление…………………………………………………………………………………..2
-
Шар и сфера…………………………………………………………………………………3
-
Шар и шаровая поверхность………………………………………………………3
-
Взаимное расположение шара и плоскости……………………………………..3
-
Принцип Кавальери. Нахождение объёмов тел с помощью принципа Кавальери…………………………………………………………………………..6
-
Интегральное исчисление. Понятие интеграла…………………………………9
-
Вычисление объёмов тел с помощью интеграла………………………………10
-
Объём шара………………………………………………………………………12
-
Шаровой сегмент. Объём шарового сегмента…………………………………12
-
Шаровой слой. Объём шарового слоя…………………………………………14
-
Шаровой сектор. Объём шарового сектора……………………………………14
-
Площадь поверхности шара…………………………………………………17
-
Площадь поверхности сектора шара……………………………………….18
-
Площадь поверхности шарового пояса…………………………………….18
-
3.Задачи………………………………………………………………………………………20
3.1 Задачи на поверхности…………………………………………………………..20
3.2 Задачи на объёмы тел……………………………………………………………23
4.Заключение…………………………………………………………………………………25
5.Литература………………………………………………………………………………….26
2. Шар и сфера.
2.1. Шар и шаровая поверхность.
Шаровой или сферической поверхностью называется геометрическое место точек пространства, удаленных от данной точки О (центра) на заданное расстояние R (радиус). Все пространство по отношению к данной шаровой поверхности разбивается на внутреннюю область (куда можно присоединить и точки самой поверхности) и внешнюю. Первая из этих областей называется шаром. Итак, шар — геометрическое место всех точек, удаленных от заданной точки О (центра) на расстояние, не превышающее данной величины R (радиуса). Шаровая поверхность является границей, отделяющей шар от окружающего пространства.
Шаровую поверхность и шар можно получить также, вращая окружность (круг) вокруг одного из диаметров.
Рассмотрим окружность с центром О и радиусом R (рис. 1), лежащую в плоскости Я. Будем вращать ее вокруг диаметра АВ. Тогда каждая из точек окружности, например М, в свою очередь опишет при вращении окружность, имеющую своим центром точку М0—проекцию вращающейся точки М на ось вращения АВ. Плоскость этой окружности перпендикулярна к оси вращения. Радиус ОМ, ведущий из центра исходной окружности в точку М, будет сохранять свою величину во все время вращения, и потому точка М все время будет находиться на сферической поверхности с центром О и радиусом R. Шаровая поверхность может быть получена вращением окружности вокруг любого из ее диаметров.
Сам шар как тело получается вращением круга; ясно, что для получения всего шара достаточно вращать полукруг около ограничивающего его диаметра.
2.2. Взаимное расположение шара и плоскости.
Исследуем вопрос о взаимном расположении шара и плоскости. Для этого, имея некоторый шар и плоскость , опустим из центра шара перпендикуляр на плоскость. Если основание этого перпендикуляра М0 окажется вне шара (рис. 2), то остальные точки плоскости и подавно будут лежать вне шара, так как они еще больше удалены от центра, чем основание перпендикуляра. В этом случае плоскость не имеет общих точек с шаром, она его не пересекает. Если основание перпендикуляра окажется на шаровой поверхности (рис. 3), то остальные точки плоскости, как и в предыдущем случае, будут лежать вне шара. Плоскость будет иметь одну общую точку с
Д
Е
Итак, если длина перпендикуляра, опущенного из центра О шара радиуса R на данную плоскость, равна d, то:
-
при d>R плоскость не пересекает шара;
-
при d = R плоскость касается шара в одной точке, радиус,
проведенный в точку касания, перпендикулярен к плоскости; -
при d<R плоскость пересекает шар по окружности, цент
ром которой служит основание перпендикуляра, опущенного из
центра шара на плоскость, а радиус равен
В частности, плоскость, проходящая через центр шара, пересекает его по окружности максимально возможного радиуса, равного радиусу шара R. Такие сечения шара плоскостями, проходящими через его центр, называются большими кругами шара.
Для наглядности вышеизложенного материала я предлагаю решить две небольшие задачи.
Задача 1. Два сечения шара радиуса 10 см параллельными плоскостями имеют радиусы, равные 6 еж и 8 см. Найти расстояние между секущими плоскостями.
Решение. Находим расстояние каждой из параллельных плоскостей до центра шара:
в зависимости от того, лежит ли центр шара между плоскостями или нет, получаем два различных ответа к задаче: