Учебная работа № 1137. Аппроксимация непрерывных функций многочленами

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (3 оценок, среднее: 4,67 из 5)
Загрузка...
Контрольные рефераты

Учебная работа № 1137. Аппроксимация непрерывных функций многочленами

Содержание

I. Постановка основной задачи теории аппроксимации

1.1. Основная теорема аппроксимации влинейном нормированном пространстве

1.2. Теорема аппроксимации в пространстве Гильберта

1.3. Первая теорема Вейерштрасса

1.4. Вторая теорема Вейерштрасса

II. Круг идей П.Л. Чебышева

2.1. Теорема ВаллеПуссена и теорема существования

2.2. Теорема Чебышева

2.3. Переход к периодическим функциям

2.4. Обобщение теоремы Чебышева

III. Методы аппроксимации

3.1. Приближение функции многочленами

3.2. Формула Тейлора

3.3. Ряды Фурье

Заключение

Литература

Элементы важной и интересной области математики теория приближения функций. Под приближением функции понимают замену по определенному правилу одной функции другой, близкой к исходной в том или ином смысле. Практическая необходимость в такой замене возникает в самых различных ситуациях, когда данную функцию необходимо заменить более простой и удобной для вычислений, восстановить функциональную зависимость по экспериментальным данным, и т.п.

Основоположником теории аппроксимации функций является великий русский математик Пафнутий Львович Чебышев (18211894).

В качестве приближающих функций выбирают чаще всего алгебраические и тригонометрические многочлены. Так же важное значение имеет метод наилучшего приближения, предложенный Чебышевым. Он возник из решения практических задач, связанных с конструированием прямолинейно направляющих шарнирных механизмов. Такие механизмы в XIX веке использовались в паровых машинах основных универсальных двигателях того времени для поддержания прямолинейного движения поршневого штока. К ним относятся параллелограмм Уатта и некоторые его разновидности.

На дальнейшее развитие этой теории оказало влияние открытие, сделанное в конце XIX века немецким математиком Карлом Вейерштрассом. Им была доказана принципиальная возможность приближения произвольной непрерывной функции с любой заданной степенью точности алгебраическим многочленом, что явилось второй причиной применения этих многочленов как универсального средства приближения функций, с заданной сколь угодно малой ошибкой.

Кроме алгебраических многочленов, другим средством приближения функций являются тригонометрические многочлены, значение которых в современной математике, конечно, не исчерпывается указанной ролью.

I. Постановка основной задачи аппроксимации

Основную задачу теории аппроксимации можно сформулировать следующим образом: на некотором точечном множестве в пространстве произвольного числа измерений заданы 2 функции f(P) и F(P,A1 ,A2 …An ) от точки P, из которых вторая зависит ещё от некоторого числа параметров А12 …Аn ; эти параметры требуется определить так, чтобы уклонение в функции F(P,A1 ,A2 …An ) от функции f(P) было наименьшим. При этом, конечно, должно быть указано, что понимают под уклонением F от f или, как ещё принято говорить, под расстоянием между F и f.

Если, например, рассматриваются ограниченные функции, то в качестве расстояния между двумя функциями можно взять верхнюю грань в модуля их разности. При таком определении расстояния для совокупности всех ограниченных в функций оказываются справедливыми многие соотношения, которые мы имеем для точек обычного 3хмерного пространства.

Последнее обстоятельство, с которым постоянно приходится сталкиваться в математике при рассмотрении других классов функций и многих иных совокупностей (множеств), привело к созданию весьма важного понятия метрического пространства, так что при дальнейшем изложении совокупность это метрическое, либо Гильбертово пространство.

1.1. Основная теорема аппроксимации линейном нормированном пространстве

Пусть Е произвольное нормированное пространство, пусть g1 ,g2 …gn n линейно независимых элементов из Е. Основную задачу аппроксимации применительно к рассматриваемому нами “линейному случаю” можно сформулировать следующим образом: дан элемент хЕ, требуется определить числа , так, чтобы величина получила наименьшее значение.

Докажем, что требуемые значения чисел существуют.

Предварительно заметим, что есть непрерывная функция своих аргументов. Действительно, в силу неравенства треугольника:

Введём теперь вторую непрерывную функцию:

На “сфере” , которая является ограниченным замкнутым множеством точек в nмерном конечном Евклидовом пространстве, функция по известной теореме Вейерштрасса имеет некоторый минимум .

Неотрицательное число не может равняться 0, так как векторы g1 ,g2 …gn линейно независимы. Так же . Обозначим () нижняя грань значения функций . Если

, то

Желая найти минимум функции , мы можем ограничиться рассмотрением только значений , для которых , т.е. рассмотрением функции в ограниченной замкнутой области, а в такой области непрерывная функция имеет минимум.

Итак, существование линейной комбинации , дающей наилучшую аппроксимацию элемента х, доказано.

Строго нормированное пространство.

Возникает вопрос, когда выражение , дающее наилучшую аппроксимацию элемента х, будет единственным для ?

Указанная единственность во всяком случае имеет место тогда, когда пространство Е строго нормировано, т.е. когда в неравенстве , знак “=” достигается только при ,.

В самом деле, допуская, что пространство Е строго нормировано, предположим, что элемент х имеет два выражения: и наилучшего приближения, причём g1 ,g2 …gn линейно независимы.

где, как легко видеть, можно принять, что и, поскольку

, то

, и, значит,

Следовательно, в силу строгой нормированности пространства: .

В этом соотношении должно =1, т.к. в противном случае элемент х был бы линейной комбинацией элементов g1 ,g2 …gn и, значит, было бы . Но если , то

и, значит, , т.к. элементы g1 ,g2 …gn линейно независимы. Таким образом, рассматриваемые выражения тождественны.

Примером строго нормированного пространства является пространство Н, а также Lp при р>1, но пространства С и L не являются строго нормированными.

Действительно, возьмём интервал [1,1] и две линейно независимые функции x(t) и y(t) , модули которых принимают свои максимальные значения в одной и той же точке интервала, причём arg x()=arg y().

Тогда очевидно, . Чтобы доказать, что не есть строго нормированное пространство, достаточно взять x(t)=1, при и x(t)=0, при t<0 ,а y(t)=1x(t).

Геометрическая интерпретация.

Проблема, существование решения которой мы ранее доказали, допускает полезную геометрическую интерпретацию. Действительно, совокупность точек вида , где зафиксированные элементы g1 ,g2 …gn линейно независимы, а пробегают всевозможные комплексные числа, представляют некоторое линейное многообразие в том смысле, что из следует, что при произвольных комплексных . Это линейное многообразие, очевидно, является пространством, так как оно содержит точку 0. При n=1 мы получаем “прямую”; при n=2 “плоскость”, а вообще “n мерную плоскость”.

Наша проблема, таким образом, состояла в нахождении точки конечномерного подпространства G пространства E, которая от заданной точки х находится на кратчайшем расстоянии (в метрике пространства Е). Мы доказали, что такая точка в G существует.

Если само пространство Е не является конечномерным, т.е. если в нём имеется сколько угодно линейно независимых между собой векторов, то Е содержит бесконечномерные подпространства. Пусть G такое подпространство.

Возникает вопрос, существует ли в G точка, наименее удалённая от заданной точки . Заметим, если пространство Е строго нормировано, то в G во всяком случае не может существовать более одной точки, наименее удалённой от данной точки .

1.2. Теоремы аппроксимации в пространстве Н.

Пусть G некоторое подпространство пространства Гильберта Н, и пусть точка x точка, не принадлежит G. Если в G существует точка y, наименее удалённая от x, то вектор xy ортогонален к каждому вектору g из G, т.е. (xy,g)=0, . Чтобы доказать это утверждение, предположим, что в G существует вектор f, для которого , и рассмотрим вектор .

Имеем и, значит: , а это противоречит предположению,что y есть наименее удалённая точка от x подпространства G. Вектор y из G, обладающий тем свойством, что разность xy ортогональна к G, естественно назвать проекцией x на G.

В этом случае, когда подпространство конечномерно и образовано линейно независимыми векторами g1 ,g2 …gn , мы можем, пользуясь доказанными предложениями, фактически найти вектор y=, наименее уклоняющийся от вектора x. Действительно, вектор y есть проекция x на G и, значит, он должен удовлетворять уравнениям:

(k=1,2…n) (1), которые в подробной записи имеют вид:

(2)

и представляют систему линейных уравнений, для нахождения коэффициентов .

Детерминант этой системы, т.е.

,

носит название детерминанта Грама системы векторов g1 ,g2 …gn .

Так как пространствоН строго нормировано, а векторы gi линейно независимы, то при любом векторе x система (2) имеет одно и только одно решение. Отсюда вытекает, что детерминант Грама линейно независимых векторов всегда отличен от нуля.

Найдём ещё выражение для квадрата погрешности, с которой вектор y аппроксимирует вектор x, т.е. для величины .

В силу (1), имеем равенство

или

.

Присоединяя это уравнение к системе (2) и исключая , найдём, что

Учебная работа № 1137. Аппроксимация непрерывных функций многочленами